Optimal Manufacturing Scheduling for Dependent Details Processing

The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.

How the Conversations in Social Media Concern in Sales in the Automobile Industry in Spain

Automobile Industry has great importance in the Spanish economy (8,7 % of the active Spanish population is employed in this sector).The above mentioned sector has been one of the principal sectors affected by the current economic crisis, consistently, the budgets in advertising have been severely limited (46,9 % less in the period of reference), these needs of reduction have originated a substantial change in the advertising strategy (from 2007 the increase of the advertising investment in Internet is 251,6 %), and increase profitability. The growing use of social media by consumers therefore makes online consumer conversations an attractive additional format for Automobile firms to promote products at a lower cost. This research analyzes the relation between the activity in Social Media and the design in the car industry, looking for relations between strategies of design based on Social Media and sales and a channel of information for companies to know what the consumer preferences. For this ongoing research we used a longitudinal withdrawal of information has been used using information of panel. Managerial and research implications of the finding are discussed.

Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution

In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.

Geospatial Network Analysis Using Particle Swarm Optimization

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

Bayesian Belief Networks for Test Driven Development

Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.

Observer Design for Ecological Monitoring

Monitoring of ecological systems is one of the major issues in ecosystem research. The concepts and methodology of mathematical systems theory provide useful tools to face this problem. In many cases, state monitoring of a complex ecological system consists in observation (measurement) of certain state variables, and the whole state process has to be determined from the observed data. The solution proposed in the paper is the design of an observer system, which makes it possible to approximately recover the state process from its partial observation. The method is illustrated with a trophic chain of resource – producer – primary consumer type and a numerical example is also presented.

Packing Theory for Natural and Crushed Aggregate to Obtain the Best Mix of Aggregate: Research and Development

Concrete performance is strongly affected by the particle packing degree since it determines the distribution of the cementitious component and the interaction of mineral particles. By using packing theory designers will be able to select optimal aggregate materials for preparing concrete with low cement content, which is beneficial from the point of cost. Optimum particle packing implies minimizing porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles, taking also the rheology of the concrete into consideration. For reaching good fluidity superplasticizers are required. The results from pilot tests at Luleå University of Technology (LTU) show various forms of the proposed theoretical models, and the empirical approach taken in the study seems to provide a safer basis for developing new, improved packing models.

New Ways for Designing External Fixators Applied in Treatment of Open and Unstable Fractures

This paper deals with a new way for designing external fixators applied in traumatology and orthopaedics. These fixators can be applied in the treatment of open and unstable fractures or for lengthening human or animal bones etc. The new design is based on the development of Ilizarov and other techniques (i.e. shape and weight optimalization based on composite materials, application of smart materials, nanotechnology, low x-ray absorption, antibacterial protection, patient's comfort, reduction in the duration of the surgical treatment, and cost).

Cost Optimization of Concentric Braced Steel Building Structures

Seismic design may require non-conventional concept, due to the fact that the stiffness and layout of the structure have a great effect on the overall structural behaviour, on the seismic load intensity as well as on the internal force distribution. To find an economical and optimal structural configuration the key issue is the optimal design of the lateral load resisting system. This paper focuses on the optimal design of regular, concentric braced frame (CBF) multi-storey steel building structures. The optimal configurations are determined by a numerical method using genetic algorithm approach, developed by the authors. Aim is to find structural configurations with minimum structural cost. The design constraints of objective function are assigned in accordance with Eurocode 3 and Eurocode 8 guidelines. In this paper the results are presented for various building geometries, different seismic intensities, and levels of energy dissipation.

Design of a Cost Effective Off-Grid Wind-Diesel Hybrid Power System in an Island of Bangladesh

Bangladesh is a developing country with large population. Demand of electrical energy is increasing day by day because of increasing population and industrialization. But due to limited resources, people here are suffering from power crisis problem which is considered as a major obstacle to the economic development. In most of the cases, it is extremely difficult to extend high tension transmission lines to some of the places that are separated from the mainland. Renewable energy is considered to be the right choice for providing clean energy to these remote settlements. This paper proposes a cost effective design of off-grid wind-diesel hybrid power system using combined heat and power (CHP) technology in a grid isolated island, Sandwip, Bangladesh. Design and simulation of the wind-diesel hybrid power system is performed considering different factors for the island Sandwip. Detailed economic analysis and comparison with solar PV system clearly reveals that wind-diesel hybrid power system can be a cost effective solution for the isolated island like Sandwip.

Solution of Interval-valued Manufacturing Inventory Models With Shortages

A manufacturing inventory model with shortages with carrying cost, shortage cost, setup cost and demand quantity as imprecise numbers, instead of real numbers, namely interval number is considered here. First, a brief survey of the existing works on comparing and ranking any two interval numbers on the real line is presented. A common algorithm for the optimum production quantity (Economic lot-size) per cycle of a single product (so as to minimize the total average cost) is developed which works well on interval number optimization under consideration. Finally, the designed algorithm is illustrated with numerical example.

The Impact of Financial System on Mixed Use Development – Unrest in UK and Sense of Safety in Mixed Use Development

The past decade has witnessed a good opportunities for city development schemes in UK. The government encouraged restoration of city centers to comprise mixed use developments with high density residential apartments. Investments in regeneration areas were doing well according to the analyses of Property Databank (IPD). However, more recent analysis by IPD has shown that since 2007, property in regeneration areas has been more vulnerable to the market downturn than other types of investment property. The early stages of a property market downturn may be felt most in regeneration where funding, investor confidence and occupier demand would dissipate because the sector was considered more marginal or risky when development costs rise. Moreover, the Bank of England survey shows that lenders have sequentially tightened the availability of credit for commercial real estate since mid-2007. A sharp reduction in the willingness of banks to lend on commercial property was recorded. The credit crunch has already affected commercial property but its impact has been particularly severe in certain kinds of properties where residential developments are extremely difficult, in particular city centre apartments and buy-to-let markets. Commercial property – retail, industrial leisure and mixed use were also pressed, in Birmingham; tens of mixed use plots were built to replace old factories in the heart of the city. The purpose of these developments was to enable young professionals to work and live in same place. Thousands of people lost their jobs during the recession, moreover lending was more difficult and the future of many developments is unknown. The recession casts its shadow upon the society due to cuts in public spending by government, Inflation, rising tuition fees and high rise in unemployment generated anger and hatred was spreading among youth causing vandalism and riots in many cities. Recent riots targeted many mixed used development in the UK where banks, shops, restaurants and big stores were robbed and set into fire leaving residents with horror and shock. This paper examines the impact of the recession and riots on mixed use development in UK.

The Effect of Fine Aggregate Properties on the Fatigue Behavior of the Conventional and Polymer Modified Bituminous Mixtures Using Two Types of Sand as Fine Aggregate

Fatigue cracking continues to be the main challenges in improving the performance of bituminous mixture pavements. The purpose of this paper is to look at some aspects of the effects of fine aggregate properties on the fatigue behaviour of hot mixture asphalt. Two types of sand (quarry and mining sand) with two conventional bitumen (PEN 50/60 & PEN 80/100) and four polymers modified bitumen PMB (PM1_82, PM1_76, PM2_82 and PM2_76) were used. Physical, chemical and mechanical tests were performed on the sands to determine their effect when incorporated with a bituminous mixture. According to the beam fatigue results, quarry sand that has more angularity, rougher, higher shear strength and a higher percentage of Aluminium oxide presented higher resistance to fatigue. Also a PMB mixture gives better fatigue results than conventional mixtures, this is due to the PMB having better viscosity property than that of the conventional bitumen.

Production of Glucose from the Hydrolysis of Cassava Residue using Bacteria Isolates from Thai Higher Termites

The possibility of using cassava residue containing 49.66% starch, 21.47% cellulose, 12.97% hemicellulose, and 21.86% lignin as a raw material to produce glucose using enzymatic hydrolysis was investigated. In the experiment, each reactor contained the cassava residue, bacteria cells, and production medium. The effects of particles size (40 mesh and 60 mesh) and strains of bacteria (A002 and M015) isolated from Thai higher termites, Microcerotermes sp., on the glucose concentration at 37°C were focused. High performance liquid chromatography (HPLC) with a refractive index detector was used to determine the quantity of glucose. The maximum glucose concentration obtained at 37°C using strain A002 and 60 mesh of the cassava residue was 1.51 g/L at 10 h.

Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study

The influence of viscosity on droplet diameter for water-in-crude oil (w/o) emulsion with two different ratios; 20-80 % and 50-50 % w/o emulsion was examined in the Brookfield Rotational Digital Rheometer. The emulsion was prepared with sorbitan sesquiolate (Span 83) act as emulsifier at varied temperature and stirring speed in rotation per minute (rpm). Results showed that the viscosity of w/o emulsion was strongly augmented by increasing volume of water and decreased the temperature. The changing of viscosity also altered the droplet size distribution. Changing of droplet diameter was depends on the viscosity and the behavior of emulsion either Newtonian or non-Newtonian.

A Wireless Secure Remote Access Architecture Implementing Role Based Access Control: WiSeR

In this study, we propose a network architecture for providing secure access to information resources of enterprise network from remote locations in a wireless fashion. Our proposed architecture offers a very promising solution for organizations which are in need of a secure, flexible and cost-effective remote access methodology. Security of the proposed architecture is based on Virtual Private Network technology and a special role based access control mechanism with location and time constraints. The flexibility mainly comes from the use of Internet as the communication medium and cost-effectiveness is due to the possibility of in-house implementation of the proposed architecture.

Analysis of Explosive Shock Wave and its Application in Snow Avalanche Release

Avalanche velocity (from start to track zone) has been estimated in the present model for an avalanche which is triggered artificially by an explosive devise. The initial development of the model has been from the concept of micro-continuum theories [1], underwater explosions [2] and from fracture mechanics [3] with appropriate changes to the present model. The model has been computed for different slab depth R, slope angle θ, snow density ¤ü, viscosity μ, eddy viscosity η*and couple stress parameter η. The applicability of the present model in the avalanche forecasting has been highlighted.

Providing On-Demand Path and Arrival Time Information Considering Realtime Delays of Buses

This paper demonstrates the bus location system for the route bus through the experiment in the real environment. A bus location system is a system that provides information such as the bus delay and positions. This system uses actual services and positions data of buses, and those information should match data on the database. The system has two possible problems. One, the system could cost high in preparing devices to get bus positions. Two, it could be difficult to match services data of buses. To avoid these problems, we have developed this system at low cost and short time by using the smart phone with GPS and the bus route system. This system realizes the path planning considering bus delay and displaying position of buses on the map. The bus location system was demonstrated on route buses with smart phones for two months.

On the Optimal Number of Smart Dust Particles

Smart Dust particles, are small smart materials used for generating weather maps. We investigate question of the optimal number of Smart Dust particles necessary for generating precise, computationally feasible and cost effective 3–D weather maps. We also give an optimal matching algorithm for the generalized scenario, when there are N Smart Dust particles and M ground receivers.