The Removal of Cu (II) Ions from Aqueous Solutions on Synthetic Zeolite NaA

In this study the adsorption of Cu (II) ions from aqueous solutions on synthetic zeolite NaA was evaluated. The effect of solution temperature and the determination of the kinetic parameters of adsorption of Cu(II) from aqueous solution on zeolite NaA is important in understanding the adsorption mechanism. Variables of the system include adsorption time, temperature (293- 328K), initial solution concentration and pH for the system. The sorption kinetics of the copper ions were found to be strongly dependent on pH (the optimum pH 3-5), solute ion concentration and temperature (293 – 328 K). It was found, the pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) onto ziolite NaA, suggesting that the adsorption mechanism might be a chemisorptions process The activation energy of adsorption (Ea) was determined as Cu(II) 13.5 kJ mol-1. The low value of Ea shows that Cu(II) adsorption process by zeolite NaA may be an activated chemical adsorption. The thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were also determined from the temperature dependence. The results show that the process of adsorption Cu(II) is spontaneous and endothermic process and rise in temperature favors the adsorption.

An Enhanced Artificial Neural Network for Air Temperature Prediction

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.

Quality of Groundwater in the Shallow Aquifers of a Paddy Dominated Agricultural River Basin, Kerala, India

Groundwater is an essential and vital component of our life support system. The groundwater resources are being utilized for drinking, irrigation and industrial purposes. There is growing concern on deterioration of groundwater quality due to geogenic and anthropogenic activities. Groundwater, being a fragile must be carefully managed to maintain its purity within standard limits. So, quality assessment and management are to be carried out hand-in-hand to have a pollution free environment and for a sustainable use. In order to assess the quality for consumption by human beings and for use in agriculture, the groundwater from the shallow aquifers (dug well) in the Palakkad and Chittur taluks of Bharathapuzha river basin - a paddy dominated agricultural basin (order=8th; L= 209 Km; Area = 6186 Km2), Kerala, India, has been selected. The water samples (n= 120) collected for various seasons, viz., monsoon-MON (August, 2005), postmonsoon-POM (December, 2005) and premonsoon-PRM (April, 2006), were analyzed for important physico-chemical attributes. Spatial and temporal variation of attributes do exist in the study area, and based on major cations and anions, different hydrochemical facies have been identified. Using Gibbs'diagram, rock dominance has been identified as the mechanism controlling groundwater chemistry. Further, the suitability of water for irrigation was determined by analyzing salinity hazard indicated by sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and sodium percent (%Na). Finally, stress zones in the study area were delineated using Arc GIS spatial analysis and various management options were recommended to restore the ecosystem.

Risk Assessment of Selected Source for Emergency Water Supply Case Study II

The case study deals with the semi-quantitative risk assessment of water resource earmarked for the emergency supply of population with drinking water. The risk analysis has been based on previously identified hazards/sensitivities of the elements of hydrogeological structure and technological equipment of ground water resource as well as on the assessment of the levels of hazard, sensitivity and criticality of individual resource elements in the form of point indexes. The following potential sources of hazard have been considered: natural disasters caused by atmospheric and geological changes, technological hazards, and environmental burdens. The risk analysis has proved that the assessed risks are acceptable and the water resource may be integrated into a crisis plan of a given region.

Sediment Transport Experiments: The Influence of the Furrow Geometry

In this experimental work, we have shown that the geometric shape of the grooves (furrows) plays an important role in sediment dynamics. In addition, the rheological behaviour of solid discharge does not depend only on the velocity discharge but also on the geometric shape.

A Bayesian Hierarchical 13COBT to Correct Estimates Associated with a Delayed Gastric Emptying

The use of a Bayesian Hierarchical Model (BHM) to interpret breath measurements obtained during a 13C Octanoic Breath Test (13COBT) is demonstrated. The statistical analysis was implemented using WinBUGS, a commercially available computer package for Bayesian inference. A hierarchical setting was adopted where poorly defined parameters associated with a delayed Gastric Emptying (GE) were able to "borrow" strength from global distributions. This is proved to be a sufficient tool to correct model's failures and data inconsistencies apparent in conventional analyses employing a Non-linear least squares technique (NLS). Direct comparison of two parameters describing gastric emptying ng ( tlag -lag phase, t1/ 2 -half emptying time) revealed a strong correlation between the two methods. Despite our large dataset ( n = 164 ), Bayesian modeling was fast and provided a successful fitting for all subjects. On the contrary, NLS failed to return acceptable estimates in cases where GE was delayed.

Stability of Homogeneous Smart Beams based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

This paper studies stability of homogeneous beams with piezoelectric layers subjected to axial load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter and foundation coefficient on the stability of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Exterior Calculus: Economic Growth Dynamics

Mathematical models of dynamics employing exterior calculus are mathematical representations of the same unifying principle; namely, the description of a dynamic system with a characteristic differential one-form on an odd-dimensional differentiable manifold leads, by analysis with exterior calculus, to a set of differential equations and a characteristic tangent vector (vortex vector) which define transformations of the system. Using this principle, a mathematical model for economic growth is constructed by proposing a characteristic differential one-form for economic growth dynamics (analogous to the action in Hamiltonian dynamics), then generating a pair of characteristic differential equations and solving these equations for the rate of economic growth as a function of labor and capital. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian for economic growth dynamics is obtained.

Non-Isothermal Kinetics of Crystallization and Phase Transformation of SiO2-Al2O3-P2O5-CaO-CaF Glass

The crystallization kinetics and phase transformation of SiO2.Al2O3.0,56P2O5.1,8CaO.0,56CaF2 glass have been investigated using differential thermal analysis (DTA), x-ray diffraction (XRD), and scanning electron microscopy (SEM). Glass samples were obtained by melting the glass mixture at 14500С/120 min. in platinum crucibles. The mixture were prepared from chemically pure reagents: SiO2, Al(OH)3, H3PO4, CaCO3 and CaF2. The non-isothermal kinetics of crystallization was studied by applying the DTA measurements carried out at various heating rates. The activation energies of crystallization and viscous flow were measured as 348,4 kJ.mol–1 and 479,7 kJ.mol–1 respectively. Value of Avrami parameter n ≈ 3 correspond to a three dimensional of crystal growth mechanism. The major crystalline phase determined by XRD analysis was fluorapatite (Ca(PO4)3F) and as the minor phases – fluormargarite (CaAl2(Al2SiO2)10F2) and vitlokite (Ca9P6O24). The resulting glass-ceramic has a homogeneous microstructure, composed of prismatic crystals, evenly distributed in glass phase.

Spatial Distribution and Risk Assessment of As, Hg, Co and Cr in Kaveh Industrial City, using Geostatistic and GIS

The concentrations of As, Hg, Co, Cr and Cd were tested for each soil sample, and their spatial patterns were analyzed by the semivariogram approach of geostatistics and geographical information system technology. Multivariate statistic approaches (principal component analysis and cluster analysis) were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that primary inputs of As, Hg and Cd were due to anthropogenic while, Co, and Cr were associated with pedogenic factors. Ordinary kriging was carried out to map the spatial patters of heavy metals. The high pollution sources evaluated was related with usage of urban and industrial wastewater. The results of this study helpful for risk assessment of environmental pollution for decision making for industrial adjustment and remedy soil pollution.

Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing

Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.

Reciprocating Equipment Piston Rod Dynamic Elastic-Plastic Deformation Analysis

Analysis of reciprocating equipment piston rod leads to nonlinear elastic-plastic deformation analysis of rod with initial imperfection under axial dynamic load. In this paper a new and effective model and analytical formulations are presented to evaluate dynamic deformation and elastic-plastic stresses of reciprocating machine piston rod. This new method has capability to account for geometric nonlinearity, elastic-plastic deformation and dynamic effects. Proposed method can be used for evaluation of piston rod performance for various reciprocating machines under different operation situations. Rod load curves and maximum allowable rod load are calculated with presented method for a refinery type reciprocating compressor. Useful recommendations and guidelines for rod load, rod load reversal and rod drop monitoring are also addressed.

Monitoring and Fault-Recovery Capacity with Waveguide Grating-based Optical Switch over WDM/OCDMA-PON

In order to implement flexibility as well as survivable capacities over passive optical network (PON), a new automatic random fault-recovery mechanism with array-waveguide-grating based (AWG-based) optical switch (OSW) is presented. Firstly, wavelength-division-multiplexing and optical code-division multiple-access (WDM/OCDMA) scheme are configured to meet the various geographical locations requirement between optical network unit (ONU) and optical line terminal (OLT). The AWG-base optical switch is designed and viewed as central star-mesh topology to prohibit/decrease the duplicated redundant elements such as fiber and transceiver as well. Hence, by simple monitoring and routing switch algorithm, random fault-recovery capacity is achieved over bi-directional (up/downstream) WDM/OCDMA scheme. When error of distribution fiber (DF) takes place or bit-error-rate (BER) is higher than 10-9 requirement, the primary/slave AWG-based OSW are adjusted and controlled dynamically to restore the affected ONU groups via the other working DFs immediately.

Determination of Stress Concentration Factors of a Steam Turbine Rotor by FEA

Stress Concentration Factors are significant in machine design as it gives rise to localized stress when any change in the design of surface or abrupt change in the cross section occurs. Almost all machine components and structural members contain some form of geometrical or microstructural discontinuities. These discontinuities are very dangerous and lead to failure. So, it is very much essential to analyze the stress concentration factors for critical applications like Turbine Rotors. In this paper Finite Element Analysis (FEA) with extremely fine mesh in the vicinity of the blades of Steam Turbine Rotor is applied to determine stress concentration factors. A model of Steam Turbine Rotor is shown in Fig. 1.

Analysis of Tool-Chip Interface Temperature with FEM and Empirical Verification

Reliable information about tool temperature distribution is of central importance in metal cutting. In this study, tool-chip interface temperature was determined in cutting of ST37 steel workpiece by applying HSS as the cutting tool in dry turning. Two different approaches were implemented for temperature measuring: an embedded thermocouple (RTD) in to the cutting tool and infrared (IR) camera. Comparisons are made between experimental data and results of MSC.SuperForm and FLUENT software. An investigation of heat generation in cutting tool was performed by varying cutting parameters at the stable cutting tool geometry and results were saved in a computer; then the diagrams of tool temperature vs. various cutting parameters were obtained. The experimental results reveal that the main factors of the increasing cutting temperature are cutting speed (V ), feed rate ( S ) and depth of cut ( h ), respectively. It was also determined that simultaneously change in cutting speed and feed rate has the maximum effect on increasing cutting temperature.

A Comparative Study on Different Approaches to Evaluate Ship Equilibrium Point

The aim of this paper is to present a comparative study on two different methods for the evaluation of the equilibrium point of a ship, core issue for designing an On Board Stability System (OBSS) module that, starting from geometry information of a ship hull, described by a discrete model in a standard format, and the distribution of all weights onboard calculates the ship floating conditions (in draught, heel and trim).

Some Physical Properties of Musk Lime (Citrus Microcarpa)

Some physical properties of musk lime (Citrus microcarpa) were determined in this study. The average moisture content (wet basis) of the fruit was found to be 85.10 (±0.72) %. The mean of length, width and thickness of the fruit was 26.36 (±0.97), 26.40 (±1.04) and 25.26 (±0.94) mm respectively. The average value for geometric mean diameter, sphericity, aspect ratio, mass, surface area, volume, true density, bulk density and porosity was 26.00 (±0.82) mm, 98.67 (±2.04) %, 100.23 (±3.28) %, 10.007 (±0.878) g, 2125.07 (±133.93) mm2, 8800.00 (±731.82) mm3, 1002.87 (±39.16) kgm-3, 501.70 (±22.58) kgm-3 and 49.89 (±3.15) % respectively. The coefficient of static friction on four types of structural surface was found to be varying from 0.238 (±0.025) for glass to 0.247 (±0.024) for steel surface.

Some Studies on Temperature Distribution Modeling of Laser Butt Welding of AISI 304 Stainless Steel Sheets

In this research work, investigations are carried out on Continuous Wave (CW) Nd:YAG laser welding system after preliminary experimentation to understand the influencing parameters associated with laser welding of AISI 304. The experimental procedure involves a series of laser welding trials on AISI 304 stainless steel sheets with various combinations of process parameters like beam power, beam incident angle and beam incident angle. An industrial 2 kW CW Nd:YAG laser system, available at Welding Research Institute (WRI), BHEL Tiruchirappalli, is used for conducting the welding trials for this research. After proper tuning of laser beam, laser welding experiments are conducted on AISI 304 grade sheets to evaluate the influence of various input parameters on weld bead geometry i.e. bead width (BW) and depth of penetration (DOP). From the laser welding results, it is noticed that the beam power and welding speed are the two influencing parameters on depth and width of the bead. Three dimensional finite element simulation of high density heat source have been performed for laser welding technique using finite element code ANSYS for predicting the temperature profile of laser beam heat source on AISI 304 stainless steel sheets. The temperature dependent material properties for AISI 304 stainless steel are taken into account in the simulation, which has a great influence in computing the temperature profiles. The latent heat of fusion is considered by the thermal enthalpy of material for calculation of phase transition problem. A Gaussian distribution of heat flux using a moving heat source with a conical shape is used for analyzing the temperature profiles. Experimental and simulated values for weld bead profiles are analyzed for stainless steel material for different beam power, welding speed and beam incident angle. The results obtained from the simulation are compared with those from the experimental data and it is observed that the results of numerical analysis (FEM) are in good agreement with experimental results, with an overall percentage of error estimated to be within ±6%.

“Magnetic Cleansing” for the Provision of a ‘Quick Clean’ to Oiled Wildlife

This research is part of a broad program aimed at advancing the science and technology involved in the rescue and rehabilitation of oiled wildlife. One aspect of this research involves the use of oil-sequestering magnetic particles for the removal of contaminants from plumage – so-called “magnetic cleansing". This treatment offers a number of advantages over conventional detergent-based methods including portability - which offers the possibility of providing a “quick clean" to the animal upon first encounter in the field. This could be particularly advantageous when the contaminant is toxic and/or corrosive and/or where there is a delay in transporting the victim to a treatment centre. The method could also be useful as part of a stabilization protocol when large numbers of affected animals are awaiting treatment. This presentation describes the design, development and testing of a prototype field kit for providing a “quick clean" to contaminated wildlife in the field.

CFD Predictions of Dense Slurry Flow in Centrifugal Pump Casings

Dense slurry flow through centrifugal pump casing has been modeled using the Eulerian-Eulerian approach with Eulerian multiphase model in FLUENT 6.1®. First order upwinding is considered for the discretization of momentum, k and ε terms. SIMPLE algorithm has been applied for dealing with pressurevelocity coupling. A mixture property based k-ε turbulence model has been used for modeling turbulence. Results are validated first against mesh independence and experiments for a particular set of operational and geometric conditions. Parametric analysis is then performed to determine the effect on important physical quantities viz. solid velocities, solid concentration and solid stresses near the wall with various operational geometric conditions of the pump.