Abstract: Soil erosion has special consequences for landfills that are more serious than those found at conventional construction sites. Different potential heads between two sides of a landfill and the subsequent movement of water through pores within the soil body could trigger the soil erosion and construction instability. Such condition was encountered in a landfill project in the southern part of Norway. To check the risk of internal erosion due changes in the groundwater level (because of seasonal flooding in the river), a series of numerical simulations by means of Geo-Seep software were conducted. Output of this study provides a total picture of the landfill stability, possibilities of erosions and necessary measures to prevent or reduce the risk for the landfill operator.
Abstract: South Africa, a water scarce country, experiences the phenomenon that its life supporting natural water resources is seriously threatened by the users that are totally dependent on it. South Africa is globally applauded to have of the best and most progressive water laws and policies. There are however growing concerns regarding natural water resource quality deterioration and a critical void in the management of natural resources and compliance to policies due to increasing institutional uncertainties and failures. These are in accordance with concerns of many South African researchers and practitioners that call for a change in paradigm from talk to practice and a more constructive, practical approach to governance challenges in the management of water resources. A qualitative theory-building case study through longitudinal action research was conducted from 2014 to 2017. The research assessed whether a strategic positioned institutional agent can be parlayed to facilitate and execute WRM on catchment level by engaging multiple stakeholders in a polycentric setting. Through a critical realist approach a distinction was made between ex ante self-deterministic human behaviour in the realist realm, and ex post governance-management in the constructivist realm. A congruence analysis, including Toulmin’s method of argumentation analysis, was utilised. The study evaluated the unique case of a self-steering local water management institution, the Impala Water Users Association (WUA) in the Pongola River catchment in the northern part of the KwaZulu-Natal Province of South Africa. Exploiting prevailing water resource threats, it expanded its ancillary functions from 20,000 to 300,000 ha. Embarking on WRM activities, it addressed natural water system quality assessments, social awareness, knowledge support, and threats, such as: soil erosion, waste and effluent into water systems, coal mining, and water security dimensions; through structured engagement with 21 different catchment stakeholders. By implementing a proposed polycentric governance-management model on a catchment scale, the WUA achieved to fill the void. It developed a foundation and capacity to protect the resilience of the natural environment that is critical for freshwater resources to ensure long-term water security of the Pongola River basin. Further work is recommended on appropriate statutory delegations, mechanisms of sustainable funding, sufficient penetration of knowledge to local levels to catalyse behaviour change, incentivised support from professionals, back-to-back expansion of WUAs to alleviate scale and cost burdens, and the creation of catchment data monitoring and compilation centres.
Abstract: Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.
Abstract: As a sediment production mechanism, soil erosion is the main environmental threat to the Bovilla watershed, including the decline of water quality of the Bovilla reservoir that provides drinking water to Tirana city (the capital of Albania). Therefore, an experiment with 25 erosion plots for soil erosion monitoring has been set up since June 2017. The aim was to determine the soil loss on plot and watershed scale in Bovilla watershed (Tirana region) for implementation of soil and water protection measures or payments for ecosystem services (PES) programs. The results of erosion monitoring for the period June 2017 - May 2018 showed that the highest values of surface runoff were noted in bare land of 38829.91 liters on slope of 74% and the lowest values in forest land of 12840.6 liters on slope of 64% while the highest values of soil loss were found in bare land of 595.15 t/ha on slope of 62% and lowest values in forest land of 18.99 t/ha on slope of 64%. These values are much higher than the average rate of soil loss in the European Union (2.46 ton/ha/year). In the same sloping class, the soil loss was reduced from orchard or bare land to the forest land, and in the same category of land use, the soil loss increased with increasing land slope. It is necessary to conduct chemical analyses of sediments to determine the amount of chemical elements leached out of the soil and end up in the reservoir of Bovilla. It is concluded that PES programs should be implemented for rehabilitation of sub-watersheds Ranxe, Vilez and Zall-Bastar of the Bovilla watershed with valuable conservation practices.
Abstract: Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5’’x 6.5’’x 7’’ consisting of arch shape (4’’) at beneath and ½” PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability.
Abstract: This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.
Abstract: Forest fire, which is, an uncontrolled fire occurring in nature has become a major concern for the Forestry Commission of Ghana (FCG). The forest fires in Ghana usually result in massive destruction and take a long time for the firefighting crews to gain control over the situation. In order to assess the effect of forest fire at local scale, it is important to consider the role fire plays in vegetation composition, biodiversity, soil erosion, and the hydrological cycle. The occurrence, frequency and behaviour of forest fires vary over time and space, primarily as a result of the complicated influences of changes in land use, vegetation composition, fire suppression efforts, and other indigenous factors. One of the forest zones in Ghana with a high level of vegetation stress is the Goaso forest area. The area has experienced changes in its traditional land use such as hunting, charcoal production, inefficient logging practices and rural abandonment patterns. These factors which were identified as major causes of forest fire, have recently modified the incidence of fire in the Goaso area. In spite of the incidence of forest fires in the Goaso forest area, most of the forest services do not provide a cartographic representation of the burned areas. This has resulted in significant amount of information being required by the firefighting unit of the FCG to understand fire risk factors and its spatial effects. This study uses Remote Sensing and Geographic Information System techniques to develop a fire risk hazard model using the Goaso Forest Area (GFA) as a case study. From the results of the study, natural forest, agricultural lands and plantation cover types were identified as the major fuel contributing loads. However, water bodies, roads and settlements were identified as minor fuel contributing loads. Based on the major and minor fuel contributing loads, a forest fire risk hazard model with a reasonable accuracy has been developed for the GFA to assist decision making.
Abstract: Flash flood is occurred in short time rainfall interval:
from 1 hour to 12 hours in small and medium basins. Flash floods
typically have two characteristics: large water flow and big flow
velocity. Flash flood is occurred at hill valley site (strip of lowland of
terrain) in a catchment with large enough distribution area, steep
basin slope, and heavy rainfall. The risk of flash floods is determined
through Gridded Basin Flash Flood Potential Index (GBFFPI). Flash
Flood Potential Index (FFPI) is determined through terrain slope
flash flood index, soil erosion flash flood index, land cover flash
floods index, land use flash flood index, rainfall flash flood index.
Determining GBFFPI, each cell in a map can be considered as outlet
of a water accumulation basin. GBFFPI of the cell is determined as
basin average value of FFPI of the corresponding water accumulation
basin. Based on GIS, a tool is developed to compute GBFFPI using
ArcObjects SDK for .NET. The maps of GBFFPI are built in two
types: GBFFPI including rainfall flash flood index (real time flash
flood warning) or GBFFPI excluding rainfall flash flood index.
GBFFPI Tool can be used to determine a high flash flood potential
site in a large region as quick as possible. The GBFFPI is improved
from conventional FFPI. The advantage of GBFFPI is that GBFFPI is
taking into account the basin response (interaction of cells) and
determines more true flash flood site (strip of lowland of terrain)
while conventional FFPI is taking into account single cell and does
not consider the interaction between cells. The GBFFPI Map of
QuangNam, QuangNgai, DaNang, Hue is built and exported to
Google Earth. The obtained map proves scientific basis of GBFFPI.
Abstract: Fires is one of the main types of disturbances that
shape ecosystems in the Mediterranean region. However nowadays,
climate alterations towards higher temperatures result on increased
levels of fire intensity, frequency and spread as well as difficulties for
natural regeneration to occur. Thasos Island is one of the Greek
islands that has experienced those problems. Since 1984, a series of
wildfires led to the reduction of forest cover from 61.6% to almost
20%. The negative impacts were devastating in many different
aspects for the island. The absence of plant cover, post-wildfire
precipitation and steep slopes were the major factors that induced
severe soil erosion and intense floods. That also resulted to serious
economic problems to the local communities and the inability of the
burnt areas to regenerate naturally. Despite the substantial amount of
published work regarding Thasos wildfires, there is no information
related to post-wildfire effects on factors such as soil erosion. More
research related to post-fire effects should help to an overall
assessment of the negative impacts of wildfires on land degradation
through processes such as soil erosion and flooding.
Abstract: The advancements in technology allow the
development of a new system that can continuously measure surface
soil erosion. Continuous soil erosion measurements are required in
order to comprehend the erosional processes and propose effective
and efficient conservation measures to mitigate surface erosion.
Mitigating soil erosion, especially in Mediterranean countries such as
Greece, is essential in order to maintain environmental and
agricultural sustainability. In this paper, we present the Automated
Soil Erosion Monitoring System (ASEMS) that measures surface soil
erosion along with other factors that impact erosional process.
Specifically, this system measures ground level changes (surface soil
erosion), rainfall, air temperature, soil temperature, and soil moisture.
Another important innovation is that the data will be collected by
remote communication. In addition, stakeholder’s awareness is a key
factor to help reduce any environmental problem. The different
dissemination activities that were utilized are described. The overall
outcomes were the development of a new innovative system that can
measure erosion very accurately. These data from the system help
study the process of erosion and find the best possible methods to
reduce erosion. The dissemination activities enhance the stakeholders
and public's awareness on surface soil erosion problems and will lead
to the adoption of more effective soil erosion conservation practices
in Greece.
Abstract: Mitigating soil erosion, especially in Mediterranean
countries such as Greece, is essential in order to maintain
environmental and agricultural sustainability. In this paper, scientific
publications related to soil erosion studies in Greece were reviewed
and categorized. To accomplish this, the online search engine of
Scopus was used. The key words were “soil”, “erosion” and
“Greece.” An analysis of the published articles was conducted at
three levels: i) type of publication, ii) chronologic and iii) thematic. A
hundred and ten publications published in scientific journals were
reviewed. The results showed that the awareness regarding the soil
erosion in Greece has increased only in the last decades. The
publications covered a wide range of thematic categories such as the
type of studied areas, the physical phenomena that trigger and
influence the soil erosion, the negative anthropogenic impacts on
them, the assessment tools that were used in order to examine the
threat and the proper management. The analysis of these articles was
significant and necessary in order to find the scientific gaps of soil
erosion studies in Greece and help enhance the sustainability of soil
management in the future.
Abstract: Soil erosion is a very complex phenomenon, resulting
from detachment and transport of soil particles by erosion agents.
The kinetic energy of raindrop is the energy available for detachment
and transport by splashing rain. The soil erodibility is defined as the
ability of soil to resist to erosion. For this purpose, an experimental
study was conducted in the laboratory using rainfall simulator to
study the effect of the kinetic energy of rain (Ec) on the soil
erodibility (K). The soil used was a sandy agricultural soil of 62.08%
coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and
7.21% clay. The obtained results show that the kinetic energy of
raindrops evolves as a power law with soil erodibility.
Abstract: In order to investigate the effect of Plant Growth
Promoting Rhizobacteria (PGPR) and rhizobium bacteria on grain
yield and some agronomic traits of mungbean (Vigna radiate L.), an
experiment was carried out based on randomized complete block
design with three replications in Malekshahi, Ilam province, Iran
during 2012-2013 cropping season. Experimental treatments
consisted of control treatment, inoculation with rhizobium bacteria,
rhizobium bacteria and Azotobacter, rhizobium bacteria and
Azospirillum, rhizobium bacteria and Pseudomonas, rhizobium
bacteria, Azotobacter and Azospirillum, rhizobium bacteria,
Azotobacter and Pseudomonas, rhizobium bacteria, Azospirillum and
Pseudomonas and rhizobium bacteria, Azotobacter, Azospirillum and
Pseudomonas. The results showed that the effect of PGPR and
rhizobium bacteria were significant affect on grain and its
components in mungbean plant. Grain yield significantly increased
by PGPR and rhizobium bacteria, so that the maximum grain yield
was obtained from rhizobium bacteria + Azospirillum +
Pseudomonas with the amount of 2287 kg.ha-1 as compared to
control treatment. Excessive application of chemical fertilizers causes
environmental and economic problems. That is, the overfertilization
of P and N leads to pollution due to soil erosion and runoff water, so
the use of PGPR and rhizobium bacteria can be justified due to
reduce input costs, increase in grain yield and environmental friendly.
Abstract: Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60°. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope.
Abstract: Water erosion is the most important problems of the soil in the Jabel Nefusa area located in northwest of Libya; therefore, erosion station had been established in the Faculty of Veterinary and dryfarming research Station, University of the Al-japel Al-gharbi in Zentan. The length of the station is 72.6 feet, 6 feet width and the percentage of its slope is 3%. The station were established to measure the amount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded were occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 liter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil. It shows also strong correlation between amount of surface runoff water and amount of eroded soil.
Abstract: Grasslands of Iran are encountered with a vast
desertification and destruction. Some legumes are plants of forage
importance with high palatability. Studied legumes in this project are
Onobrychis, Medicago sativa (alfalfa) and Trifolium repens. Seeds
were cultivated in research field of Kaboutarabad (33 km East of
Isfahan, Iran) with an average 80 mm. annual rainfall. Plants were
cultivated in a split plot design with 3 replicate and two water
treatments (weekly irrigation, and under stress with same amount per
15 days interval). Water entrance to each plots were measured by
Partial flow. This project lasted 20 weeks. Destructive samplings
(1m2 each time) were done weekly. At each sampling plants were
gathered and weighed separately for each vegetative parts. An Area
Meter (Vista) was used to measure root surface and leaf area. Total
shoot and root fresh and dry weight, leaf area index and soil coverage
were evaluated too. Dry weight was achieved in 750c oven after 24
hours. Statgraphic and Harvard Graphic software were used to
formulate and demonstrate the parameters curves due to time. Our
results show that Trifolium repens has affected 60 % and Medicago
sativa 18% by water stress. Onobrychis total fresh weight was
reduced 45%. Dry weight or Biomass in alfalfa is not so affected by
water shortage. This means that in alfalfa fields we can decrease the
irrigation amount and have some how same amount of Biomass.
Onobrychis show a drastic decrease in Biomass. The increases in
total dry matter due to time in studied plants are formulated. For
Trifolium repens if removal or cattle entrance to meadows do not
occurred at perfect time, it will decrease the palatability and water
content of the shoots. Water stress in a short period could develop the
root system in Trifolium repens, but if it last more than this other
ecological and soil factors will affect the growth of this plant. Low
level of soil water is not so important for studied legume forges. But
water shortage affect palatability and water content of aerial parts.
Leaf area due to time in studied legumes is formulated. In fact leaf
area is decreased by shortage in available water. Higher leaf area
means higher forage and biomass production. Medicago and
Onobrychis reach to the maximum leaf area sooner than Trifolium
and are able to produce an optimum soil cover and inhibit the
transpiration of soil water of meadows. Correlation of root surface to
Total biomass in studied plants is formulated. Medicago under water
stress show a 40% decrease in crown cover while at optimum
condition this amount reach to 100%. In order to produce forage in
areas without soil erosion Medicago is the best choice even with a
shortage in water resources. It is tried to represent the growth
simulation of three famous Forage Legumes. By growth simulation
farmers and range managers could better decide to choose best plant
adapted to water availability without designing different time and
labor consuming field experiments.
Abstract: Sedimentation process resulting from soil erosion in
the water basin especially in arid and semi-arid where poor
vegetation cover in the slope of the mountains upstream could
contribute to sediment formation. The consequence of sedimentation
not only makes considerable change in the morphology of the river
and the hydraulic characteristics but would also have a major
challenge for the operation and maintenance of the canal network
which depend on water flow to meet the stakeholder-s requirements.
For this reason mathematical modeling can be used to simulate the
effective factors on scouring, sediment transport and their settling
along the waterways. This is particularly important behind the
reservoirs which enable the operators to estimate the useful life of
these hydraulic structures. The aim of this paper is to simulate the
sedimentation and erosion in the eastern and western water intake
structures of the Dez Diversion weir using GSTARS-3 software. This
is done to estimate the sedimentation and investigate the ways in
which to optimize the process and minimize the operational
problems. Results indicated that the at the furthest point upstream of
the diversion weir, the coarser sediment grains tended to settle. The
reason for this is the construction of the phantom bridge and the
outstanding rocks just upstream of the structure. The construction of
these along the river course has reduced the momentum energy
require to push the sediment loads and make it possible for them to
settle wherever the river regime allows it. Results further indicated a
trend for the sediment size in such a way that as the focus of study
shifts downstream the size of grains get smaller and vice versa. It
was also found that the finding of the GSTARS-3 had a close
proximity with the sets of the observed data. This suggests that the
software is a powerful analytical tool which can be applied in the
river engineering project with a minimum of costs and relatively
accurate results.
Abstract: The purpose of this article is to study the effects of
plants cover on overland flow and, therefore, its influences on the
amount of eroded and transported soil. In this investigation, all the
experiments were conducted in the LEGHYD laboratory using a
rainfall simulator and a soil tray. The experiments were conducted
using an experimental plot (soil tray) which is 2m long, 0.5 m wide
and 0.15 m deep. The soil used is an agricultural sandy soil (62,08%
coarse sand, 19,14% fine sand, 11,57% silt and 7,21% clay). Plastic
rods (4 mm in diameter) were used to simulate the plants at different
densities: 0 stem/m2 (bared soil), 126 stems/m², 203 stems/m², 461
stems/m² and 2500 stems/m²). The used rainfall intensity is 73mm/h
and the soil tray slope is fixed to 3°. The results have shown that the
overland flow velocities decreased with increasing stems density, and
the density cover has a great effect on sediment concentration.
Darcy–Weisbach and Manning friction coefficients of overland flow
increased when the stems density increased. Froude and Reynolds
numbers decreased with increasing stems density and, consequently,
the flow regime of all treatments was laminar and subcritical. From
these findings, we conclude that increasing the plants cover can
efficiently reduce soil loss and avoid denuding the roots plants.
Abstract: Today, incorrect use of lands and land use changes,
excessive grazing, no suitable using of agricultural farms, plowing on
steep slopes, road construct, building construct, mine excavation etc
have been caused increasing of soil erosion and sediment yield. For
erosion and sediment estimation one can use statistical and empirical
methods. This needs to identify land unit map and the map of
effective factors. However, these empirical methods are usually time
consuming and do not give accurate estimation of erosion. In this
study, we applied GIS techniques to estimate erosion and sediment of
Menderjan watershed at upstream Zayandehrud river in center of
Iran. Erosion faces at each land unit were defined on the basis of land
use, geology and land unit map using GIS. The UTM coordinates of
each erosion type that showed more erosion amounts such as rills and
gullies were inserted in GIS using GPS data. The frequency of
erosion indicators at each land unit, land use and their sediment yield
of these indices were calculated. Also using tendency analysis of
sediment yield changes in watershed outlet (Menderjan hydrometric
gauge station), was calculated related parameters and estimation
errors. The results of this study according to implemented watershed
management projects can be used for more rapid and more accurate
estimation of erosion than traditional methods. These results can also
be used for regional erosion assessment and can be used for remote
sensing image processing.
Abstract: In recent years, most of the regions in the world are
exposed to degradation and erosion caused by increasing
population and over use of land resources. The understanding of
the most important factors on soil erosion and sediment yield are
the main keys for decision making and planning. In this study, the
sediment yield and soil erosion were estimated and the priority of
different soil erosion factors used in the MPSIAC method of soil
erosion estimation is evaluated in AliAbad watershed in southwest
of Isfahan Province, Iran. Different information layers of the
parameters were created using a GIS technique. Then, a
multivariate procedure was applied to estimate sediment yield and
to find the most important factors of soil erosion in the model. The
results showed that land use, geology, land and soil cover are the
most important factors describing the soil erosion estimated by
MPSIAC model.