Abstract: Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.
Abstract: When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.
Abstract: The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.
Abstract: The aim of this study is to examine, through
experimentation in the laboratory, the supercritical flow in the
presence of an obstacle in a rectangular channel. The supercritical
regime in the whole hydraulic channel is achieved by adding a
convergent. We will observe the influence of the obstacle shape and
dimension on the characteristics of the supercritical flow, mainly the
free-surface elevation and the velocity profile. The velocity
measurements have been conducted with the one dimension laser
anemometry technique.
Abstract: The present study is concerned with the problem of determining the shape of the free surface flow in a hydraulic channel which has an uneven bottom. For the mathematical formulation of the problem, the fluid of the two-dimensional irrotational steady flow in water is assumed inviscid and incompressible. The solutions of the nonlinear problem are obtained by using the usual conformal mapping theory and Hilbert’s technique. An experimental study, for comparing the obtained results, has been conducted in a hydraulic channel (subcritical regime and supercritical regime).
Abstract: Soil erosion is a very complex phenomenon, resulting
from detachment and transport of soil particles by erosion agents.
The kinetic energy of raindrop is the energy available for detachment
and transport by splashing rain. The soil erodibility is defined as the
ability of soil to resist to erosion. For this purpose, an experimental
study was conducted in the laboratory using rainfall simulator to
study the effect of the kinetic energy of rain (Ec) on the soil
erodibility (K). The soil used was a sandy agricultural soil of 62.08%
coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and
7.21% clay. The obtained results show that the kinetic energy of
raindrops evolves as a power law with soil erodibility.
Abstract: The purpose of this article is to study the effects of
plants cover on overland flow and, therefore, its influences on the
amount of eroded and transported soil. In this investigation, all the
experiments were conducted in the LEGHYD laboratory using a
rainfall simulator and a soil tray. The experiments were conducted
using an experimental plot (soil tray) which is 2m long, 0.5 m wide
and 0.15 m deep. The soil used is an agricultural sandy soil (62,08%
coarse sand, 19,14% fine sand, 11,57% silt and 7,21% clay). Plastic
rods (4 mm in diameter) were used to simulate the plants at different
densities: 0 stem/m2 (bared soil), 126 stems/m², 203 stems/m², 461
stems/m² and 2500 stems/m²). The used rainfall intensity is 73mm/h
and the soil tray slope is fixed to 3°. The results have shown that the
overland flow velocities decreased with increasing stems density, and
the density cover has a great effect on sediment concentration.
Darcy–Weisbach and Manning friction coefficients of overland flow
increased when the stems density increased. Froude and Reynolds
numbers decreased with increasing stems density and, consequently,
the flow regime of all treatments was laminar and subcritical. From
these findings, we conclude that increasing the plants cover can
efficiently reduce soil loss and avoid denuding the roots plants.
Abstract: In this experimental work, we have shown that the
geometric shape of the grooves (furrows) plays an important role in
sediment dynamics. In addition, the rheological behaviour of solid
discharge does not depend only on the velocity discharge but also on
the geometric shape.
Abstract: The study concerns an experimental investigation in
the laboratory of the water erosion using a rainfall simulator. We
have focused our attention on the influence of rainfall intensity on
some hydraulic characteristics. The results obtained allow us to
conclude that there is a significant correlation between rainfall
intensity and hydraulic characteristics of runoff (Reynolds number,
Froude number) and sediment concentration.
Abstract: The purpose of this investigation is to relate the rain
power and the overland flow power to soil erodibility to assess the
effects of both parameters on soil erosion using variable rainfall
intensity on remoulded agricultural soil. Six rainfall intensities were
used to simulate the natural rainfall and are as follows: 12.4mm/h,
20.3mm/h, 28.6mm/h, 52mm/h, 73.5mm/h and 103mm/h. The results
have shown that the relationship between overland flow power and
rain power is best represented by a linear function (R2=0.99). As
regards the relationships between soil erodibility factor and rain and
overland flow powers, the evolution of both parameters with the
erodibility factor follow a polynomial function with high coefficient
of determination. From their coefficients of determination (R2=0.95)
for rain power and (R2=0.96) for overland flow power, we can
conclude that the flow has more power to detach particles than rain.
This could be explained by the fact that the presence of particles,
already detached by rain and transported by the flow, give the flow
more weight and then contribute to the detachment of particles by
collision.
Abstract: The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.