Abstract: Soil erosion is a very complex phenomenon, resulting
from detachment and transport of soil particles by erosion agents.
The kinetic energy of raindrop is the energy available for detachment
and transport by splashing rain. The soil erodibility is defined as the
ability of soil to resist to erosion. For this purpose, an experimental
study was conducted in the laboratory using rainfall simulator to
study the effect of the kinetic energy of rain (Ec) on the soil
erodibility (K). The soil used was a sandy agricultural soil of 62.08%
coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and
7.21% clay. The obtained results show that the kinetic energy of
raindrops evolves as a power law with soil erodibility.
Abstract: The study concerns an experimental investigation in
the laboratory of the water erosion using a rainfall simulator. We
have focused our attention on the influence of rainfall intensity on
some hydraulic characteristics. The results obtained allow us to
conclude that there is a significant correlation between rainfall
intensity and hydraulic characteristics of runoff (Reynolds number,
Froude number) and sediment concentration.
Abstract: The purpose of this investigation is to relate the rain
power and the overland flow power to soil erodibility to assess the
effects of both parameters on soil erosion using variable rainfall
intensity on remoulded agricultural soil. Six rainfall intensities were
used to simulate the natural rainfall and are as follows: 12.4mm/h,
20.3mm/h, 28.6mm/h, 52mm/h, 73.5mm/h and 103mm/h. The results
have shown that the relationship between overland flow power and
rain power is best represented by a linear function (R2=0.99). As
regards the relationships between soil erodibility factor and rain and
overland flow powers, the evolution of both parameters with the
erodibility factor follow a polynomial function with high coefficient
of determination. From their coefficients of determination (R2=0.95)
for rain power and (R2=0.96) for overland flow power, we can
conclude that the flow has more power to detach particles than rain.
This could be explained by the fact that the presence of particles,
already detached by rain and transported by the flow, give the flow
more weight and then contribute to the detachment of particles by
collision.