Globalisation, ICTs and National Identity: The Consequences of ICT Policy in Malaysia

For the past thirty years the Malaysian economy has been said to contribute well to the progress of the nations. However, the intensification of global economy activity and the extensive use of Information Communication Technologies (ICTs) in recent years are challenging government-s effort to further develop Malaysian society. The competition posed by the low wage economies such as China and Vietnam have made the government realise the importance of engaging in high-skill and high technology industries. It is hoped this will be the basis of attracting more foreign direct investment (FDI) in order to help the country to compete in globalised world. Using Vision 2020 as it targeted vision, the government has decided to engage in the use of ICTs and introduce many policies pertaining to it. Mainly based on the secondary analysis approach, the findings show that policy pertaining to ICTs in Malaysia contributes to economic growth, but the consequences of this have resulted in greater division within society. Although some of the divisions such as gender and ethnicity are narrowing down, the gap in important areas such as regions and class differences is becoming wider. The widespread use of ICTs might contribute to the further establishment of democracy in Malaysia, but the increasing number of foreign entities such as FDI and foreign workers, cultural hybridisation and to some extent cultural domination are contributing to neocolonialism in Malaysia. This has obvious consequences for the government-s effort to create a Malaysian national identity. An important finding of this work is that there are contradictions within ICT policy between the effort to develop the economy and society.

Pressure Swing Adsorption with Cassava Adsorbent for Dehydration of Ethanol Vapor

Ethanol has become more attractive in fuel industry either as fuel itself or an additive that helps enhancing the octane number and combustibility of gasoline. This research studied a pressure swing adsorption using cassava-based adsorbent prepared from mixture of cassava starch and cassava pulp for dehydration of ethanol vapor. The apparatus used in the experiments consisted of double adsorption columns, an evaporator, and a vacuum pump. The feed solution contained 90-92 %wt of ethanol. Three process variables: adsorption temperatures (110, 120 and 130°C), adsorption pressures (1 and 2 bar gauge) and feed vapor flow rate (25, 50 and 75 % valve opening of the evaporator) were investigated. According to the experimental results, the optimal operating condition for this system was found to be at 2 bar gauge for adsorption pressure, 120°C for adsorption temperature and 25% valve opening of the evaporator. Production of 1.48 grams of ethanol with concentration higher than 99.5 wt% per gram of adsorbent was obtained. PSA with cassavabased adsorbent reported in this study could be an alternative method for production of nearly anhydrous ethanol. Dehydration of ethanol vapor achieved in this study is due to an interaction between free hydroxyl group on the glucose units of the starch and the water molecules.

Refined Buckling Analysis of Rectangular Plates Under Uniaxial and Biaxial Compression

In the traditional buckling analysis of rectangular plates the classical thin plate theory is generally applied, so neglecting the plating shear deformation. It seems quite clear that this method is not totally appropriate for the analysis of thick plates, so that in the following the two variable refined plate theory proposed by Shimpi (2006), that permits to take into account the transverse shear effects, is applied for the buckling analysis of simply supported isotropic rectangular plates, compressed in one and two orthogonal directions. The relevant results are compared with the classical ones and, for rectangular plates under uniaxial compression, a new direct expression, similar to the classical Bryan-s formula, is proposed for the Euler buckling stress. As the buckling analysis is a widely diffused topic for a variety of structures, such as ship ones, some applications for plates uniformly compressed in one and two orthogonal directions are presented and the relevant theoretical results are compared with those ones obtained by a FEM analysis, carried out by ANSYS, to show the feasibility of the presented method.

A Modified Spiral Search Algorithm and Its Embedded System Architecture Design

One of the most growing areas in the embedded community is multimedia devices. Multimedia devices incorporate a number of complicated functions for their operation, like motion estimation. A multitude of different implementations have been proposed to reduce motion estimation complexity, such as spiral search. We have studied the implementations of spiral search and identified areas of improvement. We propose a modified spiral search algorithm, with lower computational complexity compared to the original spiral search. We have implemented our algorithm on an embedded ARM based architecture, with custom memory hierarchy. The resulting system yields energy consumption reduction up to 64% and performance increase up to 77%, with a small penalty of 2.3 dB, in average, of video quality compared with the original spiral search algorithm.

Formation of Nanosize Phases under Thermomechanical Strengthening of Low Carbon Steel

A study of the H-beam's nanosize structure phase states after thermomechanical strengthening was carried out by TEM. The following processes were analyzed. 1. The dispersing of the cementite plates by cutting them by moving dislocations. 2. The dissolution of cementite plates and repeated precipitation of the cementite particles on the dislocations, the boundaries, subgrains and grains. 3. The decay of solid solution of carbon in the α-iron after "self-tempering" of martensite. 4. The final transformation of the retained austenite in beinite with α-iron particles and cementite formation. 5. The implementation of the diffusion mechanism of γ ⇒ α transformation.

The Effects of Aggregate Sizes and Fiber Volume Fraction on Bending Toughness and Direct Tension of Steel Fiber Reinforced Concrete

In order to supplement the brittle property of concrete, fibers are added into concrete mixtures. Compared to general concrete, various characteristics such as tensile strength, bending strength, bending toughness, and resistance to crack are superior, and even when cracks occur, improvements on toughness as well as resistance to shock are excellent due to the growth of fracture energy. Increased function of steel fiber reinforced concrete can be differentiated depending on the fiber dispersion, and sand percentage can be an important influence on the fiber dispersion. Therefore, in this research, experiments were planned on sand percentage in order to apprehend the influence of sand percentage on the bending properties and direct tension of SFRC and basic experiments were conducted on bending and direct tension in order to recognize the properties of bending properties and direct tension following the size of the aggregates and sand percentage.

Fluorescent-Core Microcavities Based On Silicon Quantum Dots for Oil Sensing Applications

The compatibility of optical resonators with microfluidic systems may be relevant for chemical and biological applications. Here, a fluorescent-core microcavity (FCM) is investigated as a refractometric sensor for heavy oils. A high-index film of silicon quantum dots (QDs) was formed inside the capillary, supporting cylindrical fluorescence whispering gallery modes (WGMs). A set of standard refractive index oils was injected into a capillary, causing a shift of the WGM resonances toward longer wavelengths. A maximum sensitivity of 240 nm/RIU (refractive index unit) was found for a nominal oil index of 1.74. As well, a sensitivity of 22 nm/RIU was obtained for a lower index of 1.48, more typical of fuel hydrocarbons. Furthermore, the observed spectra and sensitivities were compared to theoretical predictions and reproduced via FDTD simulations, showing in general an excellent agreement. This work demonstrates the potential use of FCMs for oil sensing applications and the more generally for detecting liquid solutions with a high refractive index or high viscosity.

Numerical Simulation of the Turbulent Flow over a Three-Dimensional Flat Roof

The flow field over a flat roof model building has been numerically investigated in order to determine threedimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data. Wind tunnel measurements and numerical predictions have been compared for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions. The proposed calculations have allowed the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a three-dimensional roof architecture dominated by flow separation.

Using the Geographic Information System (GIS) in the Sustainable Transportation

The significance of emissions from the road transport sector (such as air pollution, noise, etc) has grown considerably in recent years. In Australia, 14.3% of national greenhouse gas emissions in 2000 were the transport sector-s share which 12.9% of net national emissions were related to a road transport alone. Considering the growing attention to the green house gas(GHG) emissions, this paper attempts to provide air pollution modeling aspects of environmental consequences of the road transport by using one of the best computer based tools including the Geographic Information System (GIS). In other word, in this study, GIS and its applications is explained, models which are used to model air pollution and GHG emissions from vehicles are described and GIS is applied in real case study that attempts to forecast GHG emission from people who travel to work by car in 2031 in Melbourne for analysing results as thematic maps.

An Overall Approach to the Communication of Organizations in Conventional and Virtual Offices

Organizational communication is an administrative function crucial especially for executives in the implementation of organizational and administrative functions. Executives spend a significant part of their time on communicative activities. Doing his or her daily routine, arranging meeting schedules, speaking on the telephone, reading or replying to business correspondence, or fulfilling the control functions within the organization, an executive typically engages in communication processes. Efficient communication is the principal device for the adequate implementation of administrative and organizational activities. For this purpose, management needs to specify the kind of communication system to be set up and the kind of communication devices to be used. Communication is vital for any organization. In conventional offices, communication takes place within the hierarchical pyramid called the organizational structure, and is known as formal or informal communication. Formal communication is the type that works in specified structures within the organizational rules and towards the organizational goals. Informal communication, on the other hand, is the unofficial type taking place among staff as face-to-face or telephone interaction. Communication in virtual as well as conventional offices is essential for obtaining the right information in administrative activities and decision-making. Virtual communication technologies increase the efficiency of communication especially in virtual teams. Group communication is strengthened through an inter-group central channel. Further, ease of information transmission makes it possible to reach the information at the source, allowing efficient and correct decisions. Virtual offices can present as a whole the elements of information which conventional offices produce in different environments. At present, virtual work has become a reality with its pros and cons, and will probably spread very rapidly in coming years, in line with the growth in information technologies.

Antecedents and Loyalty of Foreign Tourists towards Attractions in Bangkok Metropolitan Area, Thailand

This study aimed to investigate the influence of selected antecedents, which were tourists’ satisfaction towards attractions in Bangkok, perceived value of the attractions, feelings of engagement with the attractions, acquaintance with the attractions, push factors, pull factors and motivation to seek novelty, on foreign tourist’s loyalty towards tourist attractions in Bangkok. By using multi stage sampling technique, 400 international tourists were sampled. After that, Semi Structural Equation Model was utilized in the analysis stage by LISREL. The Semi Structural Equation Model of the selected antecedents of tourist’s loyalty attractions had a correlation with the empirical data through the following statistical descriptions: Chi- square = 3.43, df = 4, P- value = 0.48893; RMSEA = 0.000; CFI = 1.00; CN = 1539.75; RMR = 0.0022; GFI = 1.00 and AGFI = 0.98. The findings indicated that all antecedents were able together to predict the loyalty of the foreign tourists who visited Bangkok at 73 percent.

Formation Control of Mobile Robots

In this paper, we study the formation control problem for car-like mobile robots. A team of nonholonomic mobile robots navigate in a terrain with obstacles, while maintaining a desired formation, using a leader-following strategy. A set of artificial potential field functions is proposed using the direct Lyapunov method for the avoidance of obstacles and attraction to their designated targets. The effectiveness of the proposed control laws to verify the feasibility of the model is demonstrated through computer simulations

Robust Artificial Neural Network Architectures

Many artificial intelligence (AI) techniques are inspired by problem-solving strategies found in nature. Robustness is a key feature in many natural systems. This paper studies robustness in artificial neural networks (ANNs) and proposes several novel, nature inspired ANN architectures. The paper includes encouraging results from experimental studies on these networks showing increased robustness.

Mobile Robot Path Planning Utilizing Probability Recursive Function

In this work a software simulation model has been proposed for two driven wheels mobile robot path planning; that can navigate in dynamic environment with static distributed obstacles. The work involves utilizing Bezier curve method in a proposed N order matrix form; for engineering the mobile robot path. The Bezier curve drawbacks in this field have been diagnosed. Two directions: Up and Right function has been proposed; Probability Recursive Function (PRF) to overcome those drawbacks. PRF functionality has been developed through a proposed; obstacle detection function, optimization function which has the capability of prediction the optimum path without comparison between all feasible paths, and N order Bezier curve function that ensures the drawing of the obtained path. The simulation results that have been taken showed; the mobile robot travels successfully from starting point and reaching its goal point. All obstacles that are located in its way have been avoided. This navigation is being done successfully using the proposed PRF techniques.

Meta-analysis of Performance: Summarizing Research for Implementation of Reconfigurability

The aim of this study is to identify the conditions of implementation for reconfigurability in summarizing past flexible manufacturing systems (FMS) research by drawing overall conclusions from many separate High Performance Manufacturing (HPM) studies. Meta-analysis will be applied to links between HPM programs and their practices related to FMS and manufacturing performance with particular reference to responsiveness performance. More specifically, an application of meta-analysis will be made with reference to two of the main steps towards the development of an empirically-tested theory: testing the adequacy of the measurement of variables and testing the linkages between the variables.

The Effect of Ethylene Glycol to Soy Polyurethane Foam Classifications

Soy polyol obtained from hydroxylation of soy epoxide with ethylene glycol were prepared as pre-polyurethane. The two step process method were applied in the polyurethane synthesis. The blending of soy polyol with synthetic polyol then simultaneously carried out to TDI (2,4): MDI (4,4-) (80:20), blowing agent, and surfactant. Ethylene glycol were not taking part in the polyurethane synthesis. The inclusion of ethylene glycol were used as a control. Characterization of polyurethane foam through impact resillience, indentation deflection, and density can visualize the polyurethane classifications.

Morphological Description of Cervical Cell Images for the Pathological Recognition

The tracking allows to detect the tumor affections of cervical cancer, it is particularly complex and consuming time, because it consists in seeking some abnormal cells among a cluster of normal cells. In this paper, we present our proposed computer system for helping the doctors in tracking the cervical cancer. Knowing that the diagnosis of the malignancy is based in the set of atypical morphological details of all cells, herein, we present an unsupervised genetic algorithm for the separation of cell components since the diagnosis is doing by analysis of the core and the cytoplasm. We give also the various algorithms used for computing the morphological characteristics of cells (Ratio core/cytoplasm, cellular deformity, ...) necessary for the recognition of illness.

Synthesis of Monoacylglycerol from Glycerolysis of Crude Glycerol with Coconut Oil Catalyzed by Carica papaya Lipase

This paper studied the synthesis of monoacylglycerol (monolaurin) by glycerolysis of coconut oil and crude glycerol, catalyzed by Carica papaya lipase. Coconut oil obtained from cold pressed extraction method and crude glycerol obtained from the biodiesel plant in Department of Chemistry, Uttaradit Rajabhat University, Thailand which used oils were used as raw materials for biodiesel production through transesterification process catalyzed by sodium hydroxide. The influences of the following variables were studied: (i) type of organic solvent, (ii) molar ratio of substrate, (iii) reaction temperature, (iv) reaction time, (v) lipase dosage, and (vi) initial water activity of enzyme. High yields in monoacylglycerol (58.35%) were obtained with molar ratio of glycerol to oil at 8:1 in ethanol, temperature was controlled at 45oC for 36 hours, the amount of enzyme used was 20 wt% of oil and initial water activity of enzyme at 0.53.

Experimental Modal Analysis and Model Validation of Antenna Structures

Numerical design optimization is a powerful tool that can be used by engineers during any stage of the design process. There are many different applications for structural optimization. A specific application that will be discussed in the following paper is experimental data matching. Data obtained through tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure focusing on the mode shapes and modal frequencies. The structure used was a scaled and simplified model of the Karoo Array Telescope-7 (KAT-7) antenna structure. This kind of data matching is a complex and difficult task. This paper discusses how optimization can assist an engineer during the process of correlating a finite element model with vibration test data.

A New Controlling Parameter in Design of Above Knee Prosthesis

In this paper after reviewing some previous studies, in order to optimize the above knee prosthesis, beside the inertial properties a new controlling parameter is informed. This controlling parameter makes the prosthesis able to act as a multi behavior system when the amputee is opposing to different environments. This active prosthesis with the new controlling parameter can simplify the control of prosthesis and reduce the rate of energy consumption in comparison to recently presented similar prosthesis “Agonistantagonist active knee prosthesis". In this paper three models are generated, a passive, an active, and an optimized active prosthesis. Second order Taylor series is the numerical method in solution of the models equations and the optimization procedure is genetic algorithm. Modeling the prosthesis which comprises this new controlling parameter (SEP) during the swing phase represents acceptable results in comparison to natural behavior of shank. Reported results in this paper represent 3.3 degrees as the maximum deviation of models shank angle from the natural pattern. The natural gait pattern belongs to walking at the speed of 81 m/min.