Formation Control of Mobile Robots

In this paper, we study the formation control problem for car-like mobile robots. A team of nonholonomic mobile robots navigate in a terrain with obstacles, while maintaining a desired formation, using a leader-following strategy. A set of artificial potential field functions is proposed using the direct Lyapunov method for the avoidance of obstacles and attraction to their designated targets. The effectiveness of the proposed control laws to verify the feasibility of the model is demonstrated through computer simulations




References:
[1] V. Gazi, "Swarm Aggregations Using Artificial Potentials and Sliding
Mode Control", in Procs. IEEE Conference on Decision and Control, Mauii, Hawaii, 2003. pp 2041-2046
[2] D. Crombie, "The Examination and Exploration of Algorithms and
Complex Behavior to Realistically Control Multiple Mobile Robots".
Master-s thesis, Australian National University, Australia, 1997.
[3] P. Ogren, "Formations and Obstacle Avoidance in Mobile Robot Control". Master-s thesis , Royal Institute of Technology, Stockholm,
Sweden, June, 2003.
[4] B. Sharma, "New Directions in the Applications of the Lyapunov-based
Control Scheme to the Findpath Problem", PhD Dissertation, University
of the South Pacific, Fiji, July 2008.
[5] T.-Broek, N.-Wouw, H. Nilmeijer, "Formation control of unicycle mobile robots: A virtual structure approach," Joint 48th IEEE Conf on
Decision and Control and 28th Chineese Conference, Shanghai, P.R. China, Dec 2009, pp. 8328-8333.
[6] W. Kang, N. Xi, J. Tan, and J. Wang, "Formation Control of Multiple Autonomous Robots: Theory and Experimentation", Intelligent
Automation and Soft Computing, 2004, 10(2): pp 1-17.
[7] R. Olfati-Saber, "Flocking for Multi-agent Dynamic Systems: Algorithms and Theory", IEEE Transactions on Autonomous Control,
2006, 51(3): pp 401-420.
[8] R. Olfati-Saber and R.M. Murray, "Flocking with Obstacle Avoidance:
Cooperation with Limited Information in Mobile Networks", in Procs.
of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, December (2003), vol 2, pp 2022-2028.
[9] R.C. Arkin, "Behavior-based robotics," London: MIT Press, 1998. +
[10] R. W. Beard, J. Lawton, and F. Y. Hadaegh, "A feedback architecture
for formation control," IEEE Transactions on Control Systems Technology, November 2001, vol. 9, pp. 777-790.
[11] J. Vanualailai, B. Sharma, and A. Ali, "Lyapunov-based Kinematic Path
Planning for a 3-Link Planar Robot Arm in a Structured Environment",
Global Journal of Pure and Applied Mathematics, 2007, 3(2), pp 175-190.
[12] K. Raghuwaiya, S. Singh, B. Sharma, and J. Vanualailai, "Autonomous Control of a Flock of 1-Trailer Mobile robots", Procs of the 2010
International Conference on Scientific Computing, Las Vegas, USA,
2010, pp 153-158.
[13] K. Raghuwaiya, S. Singh, B. Sharma, G. Lingam, " Formation Types of
a Flock of 1-Trailer Mobile Robots," Proc of The 7th IMT-GT International Conference on Mathematics, Statistics and its Applications, Bangkok, Thailand, 2011, pp 368-382.
[14] R. W. Brockett, "Differential Geometry Control Theory", chapter
Asymptotic Stability and Feedback Stabilisation, pages 181-191.
Springer-Verlag, (1983).