Improvements in Material Handling: A Case Study of Cement Manufacturing Plant

The globalization of the Indian economy has thrown a great challenge to the Indian industries in respect of productivity, quality, cost, delivery etc. Achieving success• the global market has required fundamental shift in the way business is conducted and has dramatically affected virtually every aspect of process industry. The internal manufacturing process and supporting infrastructure should be such that it can compete successfully in global markets with better flexibility and delivery. The paper deals with a case study of a reputed process industry, some changes in the process has been suggested, which leads to reduction in labor cost and production cost.

Effect of Muscle Loss on Hip Muscular Effort during the Swing Phase of Transfemoral Amputee Gait: A Simulation Study

The effect of muscle loss due to transfemoral amputation, on energy expenditure of hip joint and individual residual muscles was simulated. During swing phase of gait, with each muscle as an ideal force generator, the lower extremity was modeled as a two-degree of freedom linkage, for which hip and knee were joints. According to results, muscle loss will not lead to higher energy expenditure of hip joint, as long as other parameters of limb remain unaffected. This finding maybe due to the role of biarticular muscles in hip and knee joints motion. Moreover, if hip flexors are removed from the residual limb, residual flexors, and if hip extensors are removed, residual extensors will do more work. In line with the common practice in transfemoral amputation, this result demonstrates during transfemoral amputation, it is important to maintain the length of residual limb as much as possible.

Questions in the School

Paper deals with the topic of questions as important components of information behavior in the school. By analyzing the Corpus Schola2010, the state of contemporary education in terms of questioning is proven unsatisfactory: 80% of the questions are asked by teachers; most of teacher-s questions are asked at the beginning of the first grade, than their number decreases and is settling down on 80±10 questions per lesson. The average number of questions within one lesson per one pupil is generally less than one whole question. The highest values are achieved in the first, sixth, eighth and tenth grade,, i.e. in the transition years in which pupils are moving into higher levels of education and every following year it declines. We can state Czech school do not support questioning and question skill of their pupils, thereby typical Czech schools are neglecting the development of thinking, reasoning and cooperation of their pupils.

Approaches to Developing Semantic Web Services

It has been recognized that due to the autonomy and heterogeneity, of Web services and the Web itself, new approaches should be developed to describe and advertise Web services. The most notable approaches rely on the description of Web services using semantics. This new breed of Web services, termed semantic Web services, will enable the automatic annotation, advertisement, discovery, selection, composition, and execution of interorganization business logic, making the Internet become a common global platform where organizations and individuals communicate with each other to carry out various commercial activities and to provide value-added services. This paper deals with two of the hottest R&D and technology areas currently associated with the Web – Web services and the semantic Web. It describes how semantic Web services extend Web services as the semantic Web improves the current Web, and presents three different conceptual approaches to deploying semantic Web services, namely, WSDL-S, OWL-S, and WSMO.

Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Experimental and Numerical Investigation of Air Ejector with Diffuser with Boundary Layer Suction

The article deals with experimental and numerical investigation of axi-symmetric subsonic air to air ejector with diffuser adapted for boundary layer suction. The diffuser, which is placed behind the mixing chamber of the ejector, has high divergence angle and therefore low efficiency. To increase the efficiency, the diffuser is equipped with slot enabling boundary layer suction. The effect of boundary layer suction on flow in ejector, static pressure distribution on the mixing chamber wall and characteristic were measured and studied numerically. Both diffuser and ejector efficiency were evaluated. The diffuser efficiency was increased, however, the efficiency of ejector itself remained low.

The Necessity of Biomass Application for Developing Combined Heat and Power (CHP)with Biogas Fuel: Case Study

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

Infrastructure Planning in Scania a Discourse Analytical Approach to the Concepts of Regional Development and Sustainability in the Planning Process

The paper applies a discourse analytical approach to investigate important concepts influencing the infrastructure planning process in the region of Scania in southern Sweden. Two discourses, one concerning regional development and one concerning sustainability are identified, discussed and contrasted. It is argued that the perceptions of problems and their suggested solutions related to transportation are based on specific ideas, in turn dependent on the importance given to certain concepts, such as regional enlargement, Scania as a transit region, the national environmental quality goals and regional attractiveness. These concepts, their underlying meaning structures and their relevance for the infrastructure planning process are analyzed. The handling of conflicting interests in the planning process, and the possible implications this may have is also discussed. The results indicate that the regional development discourse is dominant and although the solutions to the problems caused by transport are framed in similar ways in the two discourses a harmonization between conflicting goals is proving difficult to achieve.

A Quality Optimization Approach: An Application on Next Generation Networks

The next generation wireless systems, especially the cognitive radio networks aim at utilizing network resources more efficiently. They share a wide range of available spectrum in an opportunistic manner. In this paper, we propose a quality management model for short-term sub-lease of unutilized spectrum bands to different service providers. We built our model on competitive secondary market architecture. To establish the necessary conditions for convergent behavior, we utilize techniques from game theory. Our proposed model is based on potential game approach that is suitable for systems with dynamic decision making. The Nash equilibrium point tells the spectrum holders the ideal price values where profit is maximized at the highest level of customer satisfaction. Our numerical results show that the price decisions of the network providers depend on the price and QoS of their own bands as well as the prices and QoS levels of their opponents- bands.

Motivation Factors to Influence the Decision to Choose Thai Fabric

The purpose of this research was to study the motivation factors to influence the decision to choose Thai Fabric. A multiple-stage sample was utilized to collect 400 samples from working women who had diverse occupations all over Thailand. This research was a quantitative analysis and questionnaire was used a tool to collect data. Descriptive statistics used in this research included percentage, average, and standard deviation and inferential statistics included hypothesis testing of one way ANOVA. The research findings revealed that demographic factors and social factors had an influence to the positive idea of wearing Thai fabric (F = 5.377, P value < 0.05). The respondents who had the age over 41 years old had a better positive idea of wearing Thai fabric than other groups. Moreover, the findings revealed that age had influenced the positive idea of wearing Thai fabric (F = 3.918, P value < 0.05). The respondents who had the age over 41 years old also had stronger believe that wearing Thai fabric to work and social gatherings are socially acceptable than other groups.

The Masquerade of Life, Our Many Selves and Issues of Privacy

This paper explores the importance of privacy in a contemporary online world. Crucial to the discussion is the idea of the Lacanian postmodern fragmented self and the problem of how to ensure that we have room to fully explore various aspects of our personalities in an environment which is–or at least feels--safe and free from observation by others. The paper begins with an exploration of the idea of the self with particular regard to the ways in which contemporary life and technology seems to have multiplied the various faces or masks which we present in different contexts. A brief history of privacy and surveillance follows. Finally, the paper ends with an affirmation of the importance of private space as an essential component of our spiritual and emotional well-being in today-s wired world.

Construction of Intersection of Nondeterministic Finite Automata using Z Notation

Functionalities and control behavior are both primary requirements in design of a complex system. Automata theory plays an important role in modeling behavior of a system. Z is an ideal notation which is used for describing state space of a system and then defining operations over it. Consequently, an integration of automata and Z will be an effective tool for increasing modeling power for a complex system. Further, nondeterministic finite automata (NFA) may have different implementations and therefore it is needed to verify the transformation from diagrams to a code. If we describe formal specification of an NFA before implementing it, then confidence over transformation can be increased. In this paper, we have given a procedure for integrating NFA and Z. Complement of a special type of NFA is defined. Then union of two NFAs is formalized after defining their complements. Finally, formal construction of intersection of NFAs is described. The specification of this relationship is analyzed and validated using Z/EVES tool.

Electronic Markets has Weakened the “Tradeoff between Reach and Richness“ in the Internet

This paper has two main ideas. Firstly, it describes Evans and Wurster-s concepts “the trade-off between reach and richness", and relates them to the impact of technology on the virtual markets. Authors Evans and Wurster see the transfer of information as a 'trade'off between richness and reach-. Reach refers to the number of people who share particular information, with Richness ['Rich'] being a more complex concept combining: bandwidth, customization, interactivity, reliability, security and currency. Traditional shopping limits the number of shops the shopper is able to visit due to time and other cost constraints; the time spent traveling consequently leaves the shopper with less time to evaluate the product. The paper concludes that although the Web provides Reach, offering Richness and the sense of community required for creating and sustaining relationships with potential clients could be difficult.

Decision Algorithm for Smart Airbag Deployment Safety Issues

Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.

Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.

Topographic Arrangement of 3D Design Components on 2D Maps by Unsupervised Feature Extraction

As a result of the daily workflow in the design development departments of companies, databases containing huge numbers of 3D geometric models are generated. According to the given problem engineers create CAD drawings based on their design ideas and evaluate the performance of the resulting design, e.g. by computational simulations. Usually, new geometries are built either by utilizing and modifying sets of existing components or by adding single newly designed parts to a more complex design. The present paper addresses the two facets of acquiring components from large design databases automatically and providing a reasonable overview of the parts to the engineer. A unified framework based on the topographic non-negative matrix factorization (TNMF) is proposed which solves both aspects simultaneously. First, on a given database meaningful components are extracted into a parts-based representation in an unsupervised manner. Second, the extracted components are organized and visualized on square-lattice 2D maps. It is shown on the example of turbine-like geometries that these maps efficiently provide a wellstructured overview on the database content and, at the same time, define a measure for spatial similarity allowing an easy access and reuse of components in the process of design development.

Optimization of R507A-R23 Cascade Refrigeration System using Genetic Algorithm

The present work deals with optimization of cascade refrigeration system using eco friendly refrigerants pair R507A and R23. R507A is azeotropic mixture composed of HFC refrigerants R125/R143a (50%/50% by wt.). R23 is a single component HFC refrigerant used as replacement to CFC refrigerant R13 in low temperature applications. These refrigerants have zero ozone depletion potential and are non-flammable. Optimization of R507AR23 cascade refrigeration system performance parameters such as minimum work required, refrigeration effect, coefficient of performance and exergetic efficiency was carried out in terms of eight operating parameters- combinations using Genetic Algorithm tool. The eight operating parameters include (1) low side evaporator temperature (2) high side condenser temperature (3) temperature difference in the cascade heat exchanger (4) low side condenser temperature (5) low side degree of subcooling (6) high side degree of subcooling (7) low side degree of superheating (8) high side degree of superheating. Results show that for minimum work system should operate at high temperature in low side evaporator, low temperature in high side condenser, low temperature difference in cascade condenser, high temperature in low side condenser and low degree of subcooling and superheating in both side. For maximum refrigeration effect system should operate at high temperature in low side evaporator, high temperature in high side condenser, high temperature difference in cascade condenser, low temperature in low side condenser and higher degree of subcooling in LT and HT side. For maximum coefficient of performance and exergetic efficiency, system should operate at high temperature in low side evaporator, low temperature in high side condenser, low temperature difference in cascade condenser, high temperature in low side condenser and higher degree of subcooling and superheating in low side of the system.

Voltage Stability Proximity Index Determined by LES Algorithm

In this paper, we propose an easily computable proximity index for predicting voltage collapse of a load bus using only measured values of the bus voltage and power; Using these measurements a polynomial of fourth order is obtained by using LES estimation algorithms. The sum of the absolute values of the polynomial coefficient gives an idea of the critical bus. We demonstrate the applicability of our proposed method on 6 bus test system. The results obtained verify its applicability, as well as its accuracy and the simplicity. From this indicator, it is allowed to predict the voltage instability or the proximity of a collapse. Results obtained by the PV curve are compared with corresponding values by QV curves and are observed to be in close agreement.

A Generic Approach to Achieve Optimal Server Consolidation by Using Existing Servers in Virtualized Data Center

Virtualization-based server consolidation has been proven to be an ideal technique to solve the server sprawl problem by consolidating multiple virtualized servers onto a few physical servers leading to improved resource utilization and return on investment. In this paper, we solve this problem by using existing servers, which are heterogeneous and diversely preferred by IT managers. Five practical consolidation rules are introduced, and a decision model is proposed to optimally allocate source services to physical target servers while maximizing the average resource utilization and preference value. Our model can be regarded as a multi-objective multi-dimension bin-packing (MOMDBP) problem with constraints, which is strongly NP-hard. An improved grouping generic algorithm (GGA) is introduced for the problem. Extensive simulations were performed and the results are given.

Remarks on Energy Based Control of a Nonlinear, Underactuated, MIMO and Unstable Benchmark

In the last decade, energy based control theory has undergone a significant breakthrough in dealing with underactated mechanical systems with two successful and similar tools, controlled Lagrangians and controlled Hamiltanians (IDA-PBC). However, because of the complexity of these tools, successful case studies are lacking, in particular, MIMO cases. The seminal theoretical paper of controlled Lagrangians proposed by Bloch and his colleagues presented a benchmark example–a 4 d.o.f underactuated pendulum on a cart but a detailed and completed design is neglected. To compensate this ignorance, the note revisit their design idea by addressing explicit control functions for a similar device motivated by a vector thrust body hovering in the air. To the best of our knowledge, this system is the first MIMO, underactuated example that is stabilized by using energy based tools at the courtesy of the original design idea. Some observations are given based on computer simulation.