Mobile Robot Navigation Using Local Model Networks

Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.

EFL Learners- Perceptions of Computer-Mediated Communication (CMC) to Facilitate Communication in a Foreign Language

This study explores perceptions of English as a Foreign Language (EFL) learners on using computer mediated communication technology in their learner of English. The data consists of observations of both synchronous and asynchronous communication participants engaged in for over a period of 4 months, which included online, and offline communication protocols, open-ended interviews and reflection papers composed by participants. Content analysis of interview data and the written documents listed above, as well as, member check and triangulation techniques are the major data analysis strategies. The findings suggest that participants generally do not benefit from computer-mediated communication in terms of its effect in learning a foreign language. Participants regarded the nature of CMC as artificial, or pseudo communication that did not aid their authentic communicational skills in English. The results of this study sheds lights on insufficient and inconclusive findings, which most quantitative CMC studies previously generated.

Critical Issues Affecting the Engagement by Staff in Professional Development for E-Learning: Findings from a Research Project within the Context of a National Tertiary Education Sector

This paper focuses on issues of engagement by staff in professional development related to the delivery of e-learning. The paper reports on findings drawn from a New Zealand research project which is producing a sector-wide framework for professional development in tertiary e-learning. The research findings indicate that staff engaged in e-learning in tertiary institutions is not making the most effective use of the professional development opportunities available to them; rather they seem to gain their knowledge and support from a variety of informal means. This is despite an emphasis on the provision of professional development opportunities by both Government Policies and Institutions themselves. The conclusion drawn from the findings is that institutional approaches to professional development for e-learning do not yet fully reflect the demands and constraints that working in a digital context impose.

Highly-Efficient Photoreaction Using Microfluidic Device

We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions.

Overall Effect of Nano Clay on the Physical Mechanical Properties of Epoxy Resin

In this paper, the effect of modified clay on the mechanical efficiency of epoxy resin is examined. Studies by X ray diffraction and microscopic transient electron method show that modified clay distribution in polymer area is intercalated kind. Examination the results of mechanical tests shows that existence of modified clay in epoxy area increases pressure yield strength, tension module and nano composite fracture toughness in relate of pure epoxy. By microscopic examinations it is recognized too that the action of toughness growth of this kind of nano composite is due to crack deflection, formation of new surfaces and fracture of clay piles.

Development for the Evaluation Index of an Anesthesia Depth using the Bispectrum Analysis

The linear SEF (Spectral Edge Frequency) parameter and spectrum analysis method can not reflect the non-linear of EEG. This method can not contribute to acquire real time analysis and obtain a high confidence in the clinic due to low discrimination. To solve the problems, the development of a new index is carried out using the bispectrum analyzing the EEG(electroencephalogram) including the non-linear characteristic. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. New index could afford to effectively discriminate the awake and anesthesia state.

Application of BP Neural Network Model in Sports Aerobics Performance Evaluation

This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.

Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Alternative Approach

An alternative iterative computational procedure is proposed for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. An accurate method for curvature radii at contacts with inner and outer raceways in the direction of the motion is used. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections.

Clarification of Synthetic Juice through Spiral Wound Ultrafiltration Module at Turbulent Flow Region and Cleaning Study

Synthetic juice clarification was done through spiral wound ultrafiltration (UF) membrane module. Synthetic juice was clarified at two different operating conditions, such as, with and without permeates recycle at turbulent flow regime. The performance of spiral wound ultrafiltration membrane was analyzed during clarification of synthetic juice. Synthetic juice was the mixture of deionized water, sucrose and pectin molecule. The operating conditions are: feed flowrate of 10 lpm, pressure drop of 413.7 kPa and Reynolds no of 5000. Permeate sample was analyzed in terms of volume reduction factor (VRF), viscosity (Pa.s), ⁰Brix, TDS (mg/l), electrical conductivity (μS) and turbidity (NTU). It was observe that the permeate flux declined with operating time for both conditions of with and without permeate recycle due to increase of concentration polarization and increase of gel layer on membrane surface. For without permeate recycle, the membrane fouling rate was faster compared to with permeate recycle. For without permeate recycle, the VRF rose up to 5 and for with recycle permeate the VRF is 1.9. The VRF is higher due to adsorption of solute (pectin) molecule on membrane surface and resulting permeateflux declined with VRF. With permeate recycle, quality was within acceptable limit. Fouled membrane was cleaned by applying different processes (e.g., deionized water, SDS and EDTA solution). Membrane cleaning was analyzed in terms of permeability recovery.

Efficiency Improvements of GaAs-based Solar Cells by Hydrothermally-deposited ZnO Nanostructure Array

ZnO nanostructures including nanowires, nanorods, and nanoneedles were successfully deposited on GaAs substrates, respectively, by simple two-step chemical method for the first time. A ZnO seed layer was firstly pre-coated on the O2-plasma treated substrate by sol-gel process, followed by the nucleation of ZnO nanostructures through hydrothermal synthesis. Nanostructures with different average diameter (15-250 nm), length (0.9-1.8 μm), density (0.9-16×109 cm-2) were obtained via adjusting the growth time and concentration of precursors. From the reflectivity spectra, we concluded ordered and taper nanostructures were preferential for photovoltaic applications. ZnO nanoneedles with an average diameter of 106 nm, a moderate length of 2.4 μm, and the density of 7.2×109 cm-2 could be synthesized in the concentration of 0.04 M for 18 h. Integrated with the nanoneedle array, the power conversion efficiency of single junction solar cell was increased from 7.3 to 12.2%, corresponding to a 67% improvement.

Tracking Activity of Real Individuals in Web Logs

This paper describes an enhanced cookie-based method for counting the visitors of web sites by using a web log processing system that aims to cope with the ambitious goal of creating countrywide statistics about the browsing practices of real human individuals. The focus is put on describing a new more efficient way of detecting human beings behind web users by placing different identifiers on the client computers. We briefly introduce our processing system designed to handle the massive amount of data records continuously gathered from the most important content providers of the Hungary. We conclude by showing statistics of different time spans comparing the efficiency of multiple visitor counting methods to the one presented here, and some interesting charts about content providers and web usage based on real data recorded in 2007 will also be presented.

Towards Modeling for Crashes A Low-Cost Adaptive Methodology for Karachi

The aim of this paper is to discuss a low-cost methodology that can predict traffic flow conflicts and quantitatively rank crash expectancies (based on relative probability) for various traffic facilities. This paper focuses on the application of statistical distributions to model traffic flow and Monte Carlo techniques to simulate traffic and discusses how to create a tool in order to predict the possibility of a traffic crash. A low-cost data collection methodology has been discussed for the heterogeneous traffic flow that exists and a GIS platform has been proposed to thematically represent traffic flow from simulations and the probability of a crash. Furthermore, discussions have been made to reflect the dynamism of the model in reference to its adaptability, adequacy, economy, and efficiency to ensure adoption.

Deflection Control in Composite Building by Using Belt Truss and Outriggers Systems

The design of high-rise building is more often dictated by its serviceability rather than strength. Structural Engineers are always striving to overcome challenge of controlling lateral deflection and storey drifts as well as self weight of structure imposed on foundation. One of the most effective techniques is the use of outrigger and belt truss system in Composite structures that can astutely solve the above two issues in High-rise constructions. This paper investigates deflection control by effective utilisation of belt truss and outrigger system on a 60-storey composite building subjected to wind loads. A three dimensional Finite Element Analysis is performed with one, two and three outrigger levels. The reductions in lateral deflection are 34%, 42% and 51% respectively as compared to a model without any outrigger system. There is an appreciable decline in the storey drifts with the introduction of these stiffer arrangements.

Flexible Workplaces Fostering Knowledge Workers Informal Learning: The Flexible Office Case

Organizations face challenges supporting knowledge workers due to their particular requirements for an environment supportive of their self-guided learning activities which are important to increase their productivity and to develop creative solutions to non-routine problems. Face-to-face knowledge sharing remains crucial in spite of a large number of knowledge management instruments that aim at supporting a more impersonal transfer of knowledge. This paper first describes the main criteria for a conceptual and technical solution targeted at flexible management of office space that aims at assigning those knowledge workers to the same room that are most likely to thrive when being brought together thus enhancing their knowledge work productivity. The paper reflects on lessons learned from the implementation and operation of such a solution in a project-focused organization and derives several implications for future extensions that target to foster problem solving, informal learning and personal development.

Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties

This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely control mix, wet mix and dry mix were prepared. Optimum binder content was calculated considering Marshall Stability, flow, air voids and Marshall Quotient at different bitumen content varying from 4% - 6.5% for control, dry and wet mix. Engineering properties thus obtained at the calculated optimum bitumen content revealed that wet mixing process is advantageous in comparison to dry mixing as it increases the stiffness of the mixture with the increase in polymer content in bitumen. Stiffness value for wet mix increases with the increase in polymer content which is beneficial in terms of rutting. 1% PP dry mix also shows enhanced stiffness, with the air void content limited to 4%.The flow behaviour of dry mix doesn't indicate any major difference with the increase in polymer content revealing that polymer acting as an aggregate only without affecting the viscosity of the binder in the mix. Polypropylene (PP) when interacted with 80 pen base bitumen enhances its performance characteristics which were brought about by altered rheological properties of the modified bitumen. The decrease in flow with the increase in binder content reflects the increase in viscosity of binder which induces the plastic flow in the mix. Workability index indicates that wet mix were easy to compact up to desired void ratio in comparison to dry mix samples.

Knowledge Acquisition for the Construction of an Evolving Ontology: Application to Augmented Surgery

This work concerns the evolution and the maintenance of an ontological resource in relation with the evolution of the corpus of texts from which it had been built. The knowledge forming a text corpus, especially in dynamic domains, is in continuous evolution. When a change in the corpus occurs, the domain ontology must evolve accordingly. Most methods manage ontology evolution independently from the corpus from which it is built; in addition, they treat evolution just as a process of knowledge addition, not considering other knowledge changes. We propose a methodology for managing an evolving ontology from a text corpus that evolves over time, while preserving the consistency and the persistence of this ontology. Our methodology is based on the changes made on the corpus to reflect the evolution of the considered domain - augmented surgery in our case. In this context, the results of text mining techniques, as well as the ARCHONTE method slightly modified, are used to support the evolution process.

Dynamic Modeling of Tow Flexible Link Manipulators

Modeling and vibration of a flexible link manipulator with tow flexible links and rigid joints are investigated which can include an arbitrary number of flexible links. Hamilton principle and finite element approach is proposed to model the dynamics of flexible manipulators. The links are assumed to be deflection due to bending. The association between elastic displacements of links is investigated, took into account the coupling effects of elastic motion and rigid motion. Flexible links are treated as Euler-Bernoulli beams and the shear deformation is thus abandoned. The dynamic behavior due to flexibility of links is well demonstrated through numerical simulation. The rigid-body motion and elastic deformations are separated by linearizing the equations of motion around the rigid body reference path. Simulation results are shown on for both position and force trajectory tracking tasks in the presence of varying parameters and unknown dynamics remarkably well. The proposed method can be used in both dynamic simulation and controller design.

A Case Study of Reactive Focus on Form through Negotiation on Spoken Errors: Does It Work for All Learners?

This case study investigates the effects of reactive focus on form through negotiation on the linguistic development of an adult EFL learner in an exclusive private EFL classroom. The findings revealed that in this classroom negotiated feedback occurred significantly more often than non-negotiated feedback. However, it was also found that in the long run the learner was significantly more successful in correcting his own errors when he had received nonnegotiated feedback than negotiated feedback. This study, therefore, argues that although negotiated feedback seems to be effective for some learners in the short run, it is non-negotiated feedback which seems to be more effective in the long run. This long lasting effect might be attributed to the impact of schooling system which is itself indicative of the dominant culture, or to the absence of other interlocutors in the course of interaction.

Seismic Performance of Masonry Buildings in Algeria

Structural performance and seismic vulnerability of masonry buildings in Algeria are investigated in this paper. Structural classification of such buildings is carried out regarding their structural elements. Seismicity of Algeria is briefly discussed. Then vulnerability of masonry buildings and their failure mechanisms in the Boumerdes earthquake (May, 2003) are examined.

Effect of Secondary Curvature on Mixing Characteristic within Constant Circular Tubes

In this study, numerical simulations on laminar flow in sinusoidal wavy shaped tubes were conducted for mean Reynolds number of 250, which is in the range of physiological flow-rate and investigated flow structures, pressure distribution and particle trajectories both in steady and periodic inflow conditions. For extensive comparisons, various wave lengths and amplitudes of sine function for geometry of tube models were employed. The results showed that small amplitude secondary curvature has significant influence on the nature of flow patterns and particle mixing mechanism. This implies that characterizing accurate geometry is essential in accurate predicting of in vivo hemodynamics and may motivate further study on any possibility of reflection of secondary flow on vascular remodeling and pathophysiology.