Evaluating the Performance of Offensive Lineman in the NFL

In this paper we objectively measure the performance of an individual offensive lineman in the NFL. The existing literature proposes various measures that rely on subjective assessments of game film, but has yet to develop an objective methodology to evaluate performance. Using a variety of statistics related to an offensive lineman’s performance, we develop a framework to objectively analyze the overall performance of an individual offensive lineman and determine specific linemen who are overvalued or undervalued relative to their salary. We identify eight players across the 2013-2014 and 2014-2015 NFL seasons that are considered to be overvalued or undervalued and corroborate the results with existing metrics that are based on subjective evaluation. To the best of our knowledge, the techniques set forth in this work have not been utilized in previous works to evaluate the performance of NFL players at any position, including offensive linemen.

Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

An Analysis of Uncoupled Designs in Chicken Egg

Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.

Applying Bowen’s Theory to Intern Supervision

The aim of this paper is to theoretically apply Bowen’s understanding of triangulation and triads to school psychology intern supervision so that it can assist in the conceptualization of the dynamics of intern supervision and provide some key methods to address common issues. The school psychology internship is the capstone experience for the school psychologist in training. It involves three key participants whose relationships will determine the success of the internship.  To understand the potential effect, Bowen’s family systems theory can be applied to the supervision relationship. He describes a way to resolve stress between two people by triangulating or binging in a third person. He applies this to a nuclear family, but school psychology intern supervision requires the marriage of an intern, field supervisor, and university supervisor; thus, setting all up for possible triangulation. The consequences of triangulation can apply to standards and requirements, direct supervision, and intern evaluation. Strategies from family systems theory to decrease the negative impact of supervision triangulation.

Evaluation of Pragmatic Information in an English Textbook: Focus on Requests

Learning to request in a foreign language is a key ability within pragmatics language teaching. This paper examines how requests are taught in English Unlimited Book 3 (Cambridge University Press), an EFL textbook series employed by King Abdulaziz University in Jeddah, Saudi Arabia to teach advanced foundation year students English. The focus of analysis is the evaluation of the request linguistic strategies present in the textbook, frequency of the use of these strategies, and the contextual information provided on the use of these linguistic forms. The researcher collected all the linguistic forms which consisted of the request speech act and divided them into levels employing the CCSARP request coding manual. Findings demonstrated that simple and commonly employed request strategies are introduced. Looking closely at the exercises throughout the chapters, it was noticeable that the book exclusively employed the most direct form of requesting (the imperative) when giving learners instructions: e.g. listen, write, ask, answer, read, look, complete, choose, talk, think, etc. The book also made use of some other request strategies such as ‘hedged performatives’ and ‘query preparatory’. However, it was also found that many strategies were not dealt with in the book, specifically strategies with combined functions (e.g. possibility, ability). On a sociopragmatic level, a strong focus was found to exist on standard situations in which relations between the requester and requestee are clear. In general, contextual information was communicated implicitly only. The textbook did not seem to differentiate between formal and informal request contexts (register) which might consequently impel students to overgeneralize. The paper closes with some recommendations for textbook and curriculum designers. Findings are also contrasted with previous results from similar body of research on EFL requests.

On Dialogue Systems Based on Deep Learning

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Assessing and Evaluating the Course Outcomes of Electrical Circuit Course for Bachelor of Science in Electrical and Electronic Engineering Program

At present, it is an imperative and stimulating task to grow the concepts and skills of undergraduate students in any course. Educators must build up students' higher-order complex and critical thinking abilities. But many of them find it difficult to assess and evaluate these abilities of students who undertake their courses during undergraduate studies. In this research work, a simple assessment and evaluation process for the electrical circuit course of the undergraduate Electrical and Electronic Engineering (EEE) program is reported using the Outcome-Based Education (OBE) approach. The methodology of the work, course contents design, course outcomes (COs) preparation and mapping it with program outcomes (POs), question setting following Bloom's taxonomy, assessment strategy of the students, CO and PO evaluation records, statistics, and charts have been reported for a student-cohort of electrical circuit course taken in Spring 2019 Semester at EEE Department of Southeast University (SEU). It is found that the benchmark fixed by the course instructor has been achieved by the students of that course through CO assessment and evaluation. Recommendations of the course teacher for further quality enhancement based on CO achievement are also presented.

Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

A Watermarking Signature Scheme with Hidden Watermarks and Constraint Functions in the Symmetric Key Setting

To claim the ownership for an executable program is a non-trivial task. An emerging direction is to add a watermark to the program such that the watermarked program preserves the original program’s functionality and removing the watermark would heavily destroy the functionality of the watermarked program. In this paper, the first watermarking signature scheme with the watermark and the constraint function hidden in the symmetric key setting is constructed. The scheme uses well-known techniques of lattice trapdoors and a lattice evaluation. The watermarking signature scheme is unforgeable under the Short Integer Solution (SIS) assumption and satisfies other security requirements such as the unremovability security property.

The Impact of Culture on Tourists’ Evaluation of Hotel Service Experiences

The purpose of this study is to investigate the impact of tourists’ culture on perception and evaluation of hotel service experience and behavioral intentions. Drawing on Hofested’s cultural dimensions, this study seeks to further contribute towards understanding the effect of culture on perception and evaluation of hotels’ services, and whether there are differences between Saudi and European tourists’ perceptions of hotel services evaluation. A descriptive cross-sectional design was used in this study. Data were collected from tourists staying in five-star hotels in Saudi Arabia using the self-completion technique. The findings show that evaluations of hotel services differ from one culture to another. T-test results reveal that Saudis were more tolerant and reported significantly higher levels of satisfaction, were more likely to return and recommend the hotel, and perceived the price for the hotel stay as being good value for money as compared to their European counterparts. The sample was relatively small and specific to only five-star hotel evaluations. As a result, findings cannot be generalized to the wider tourist population. The results of this research have important implications for management within the Saudi hospitality industry. The study contributes to the tourist cultural theory by emphasizing the relative importance of cultural dimensions in-service evaluation. The author argues that no studies could be identified that compare Saudis and Europeans in their evaluations of their experiences staying at hotels. Therefore, the current study would enhance understanding of the effects of cultural factors on service evaluations and provide valuable input for international market segmentation and resource allocation in the Saudi hotel industry.

Evaluating the Effectiveness of Electronic Response Systems in Technology-Oriented Classes

Electronic Response Systems such as Kahoot, Poll Everywhere, and Google Classroom are gaining a lot of popularity when surveying audiences in events, meetings, and classroom. The reason is mainly because of the ease of use and the convenience these tools bring since they provide mobile applications with a simple user interface. In this paper, we present a case study on the effectiveness of using Electronic Response Systems on student participation and learning experience in a classroom. We use a polling application for class exercises in two different technology-oriented classes. We evaluate the effectiveness of the usage of the polling applications through statistical analysis of the students performance in these two classes and compare them to the performances of students who took the same classes without using the polling application for class participation. Our results show an increase in the performances of the students who used the Electronic Response System when compared to those who did not by an average of 11%.

Study of Hydrophobicity Effect on 220kV Double Tension Insulator String Surface Using Finite Element Method

Insulators are one of the most significant equipment in power system. The insulators’ operation may affect the power flow, line loss and reliability. The electrical parameters that influence the performance of insulator are surface leakage current, corona and dry band arcing. Electric field stresses on the insulator surface will degrade the insulating properties and lead to puncture. Electric filed stresses can be analyzed by numerical methods and experimental evaluation. As per economic aspects, evaluation by numerical methods are best. In outdoor insulation, a hydrophobic surface can facilitate to prevent water film formation on the insulation surface, which is decisive for diminishing leakage currents and partial discharge (PD) under heavy polluted environments and harsh weather conditions. Polymer materials like silicone rubber have an outstanding hydrophobic property among general insulation materials. In this paper, electrical field intensity of 220 kV porcelain and polymer double tension insulator strings at critical regions are analyzed and compared by using Finite Element Method. Hydrophobic conditions of polymer insulator with equal and unequal water molecule conditions are verified by using finite element method.

Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Evaluation of Two Earliness Cotton Genotypes in Three Ecological Regions

Two earliness cotton genotypes I and II, which had been developed by hybridization and backcross methods between sindise-80 as an early maturing gene parent and two other lines i.e. Red leaf and Bulgare-557 as a second parent, are subjected to different environmental conditions. The early maturing genotypes with coded names of I and II were compared with four native cotton cultivars in randomized complete block design (RCBD) with four replications in three ecological regions of Iran from 2016-2017. Two early maturing genotypes along with four native cultivars viz. Varamin, Oltan, Sahel and Arya were planted in Agricultural Research Station of Varamin, Moghan and Kashmar for evaluation. Earliness data were collected for six treatments during two years in the three regions except missing data for the second year of Kashmar. Therefore, missed data were estimated and imputed. For testing the homogeneity of error variances, each experiment at a given location or year is analyzed separately using Hartley and Bartlett’s Chi-square tests and both tests confirmed homogeneity of variance. Combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects were compared with Duncan’s multiple range tests. Finally combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects are compared with Duncan’s multiple range tests.

Developing Proof Demonstration Skills in Teaching Mathematics in the Secondary School

The article describes the theoretical concept of teaching secondary school students proof demonstration skills in mathematics. It describes in detail different levels of mastery of the concept of proof-which correspond to Piaget’s idea of there being three distinct and progressively more complex stages in the development of human reflection. Lessons for each level contain a specific combination of the visual-figurative components and deductive reasoning. It is vital at the transition point between levels to carefully and rigorously recalibrate teaching to reflect the development of more complex reflective understanding. This can apply even within the same age range, since students will develop at different speeds and to different potential. The authors argue that this requires an aware and adaptive approach to lessons to reflect this complexity and variation. The authors also contend that effective teaching which enables students to properly understand the implementation of proof arguments must develop specific competences. These are: understanding of the importance of completeness and generality in making a valid argument; being task focused; having an internalised locus of control and being flexible in approach and evaluation. These criteria must be correlated with the systematic application of corresponding methodologies which are best likely to achieve success. The particular pedagogical decisions which are made to deliver this objective are illustrated by concrete examples from the existing secondary school mathematics courses. The proposed theoretical concept formed the basis of the development of methodological materials which have been tested in 47 secondary schools.

Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Comparing the Educational Effectiveness of eHealth to Deliver Health Knowledge between Higher Literacy Users and Lower Literacy Users

eHealth is undoubtedly emerging as a promising vehicle to provide information for individual self-care management. However, the accessing ability, reading strategies and navigating behavior between higher literacy users and lower literacy users are significantly different. Yet, ways to tailor audiences’ health literacy and develop appropriate eHealth to feed their need become a big challenge. The purpose of this study is to compare the educational effectiveness of eHealth to deliver health knowledge between higher literacy users and lower literacy users, thus establishing useful design strategies of eHealth for users with different level of health literacy. The study was implemented in four stages, the first of which developed a website as the testing media to introduce health care knowledge relating to children’s allergy. Secondly, a reliability and validity test was conducted to make sure that all of the questions in the questionnaire were good indicators. Thirdly, a pre-post knowledge test was conducted with 66 participants, 33 users with higher literacy and 33 users with lower literacy respectively. Finally, a usability evaluation survey was undertaken to explore the criteria used by users with different levels of health literacy to evaluate eHealth. The results demonstrated that the eHealth Intervention in both groups had a positive outcome. There was no significant difference between the effectiveness of eHealth intervention between users with higher literacy and users with lower literacy. However, the average mean of lower literacy group was marginally higher than the average mean of higher literacy group. The findings also showed that the criteria used to evaluate eHealth could be analyzed in terms of the quality of information, appearance, appeal and interaction, but the users with lower literacy have different evaluation criteria from those with higher literacy. This is an interdisciplinary research which proposes the sequential key steps that incorporate the planning, developing and accessing issues that need to be considered when designing eHealth for patients with varying degrees of health literacy.

Evaluation of the Quality of Education Offered to Students with Special Needs in Public Schools in the City of Bauru, Brazil

A paradigm shift is a process. The process of implementing inclusive education, a system constructed to support all learners, requires planning, identification, experimentation, and evaluation. In this vein, the purpose of the present study was to evaluate the capacity of one Brazilian state school systems to provide special education students with a quality inclusive education. This study originated at the behest of concerned families of students with special needs who filed complaints with the Municipality of Bauru, São Paulo. These families claimed, 1) children with learning differences and educational needs had not been identified for services, and 2) those who had been identified had not received sufficient specialized educational assistance (SEA) in schools across the City of Bauru. Hence, the Office of Civil Rights for the state of São Paulo (Ministério Público de São Paulo) summoned the local higher education institution, UNESP, to design a research study to investigate these allegations. In this exploratory study, descriptive data were gathered from all elementary and middle schools including 58 state schools and 17 city schools, for a total of 75 schools overall. Data collection consisted of each school's annual strategic action plan, surveys and interviews with all school stakeholders to determine their perceptions of the inclusive education available to students with Special Education Needs (SEN). The data were collected as one of four stages in a larger study which also included field observations of a focal students' experience and a continuing education course for all teachers and administrators in both state and city schools. For the purposes of this study, the researchers were interested in understanding the perceptions of school staff, parents, and students across all schools. Therefore, documents and surveys from 75 schools were analyzed for adherence to federal legislation guaranteeing students with SEN the right to special education assistance within the regular school setting. Results shows that while some schools recognized the legal rights of SEN students to receive special education, the plans to actually deliver services were absent. In conclusion, the results of this study revealed both school staff and families have insufficient planning and accessibility resources, and the schools have inadequate infrastructure for full-time support to SEN students, i.e., structures and systems to support the identification of SEN and delivery of services within schools of Bauru, SP. Having identified the areas of need, the city is now prepared to take next steps in the process toward preparing all schools to be inclusive.

Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector

The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly.