Efficiency Improvements of GaAs-based Solar Cells by Hydrothermally-deposited ZnO Nanostructure Array

ZnO nanostructures including nanowires, nanorods, and nanoneedles were successfully deposited on GaAs substrates, respectively, by simple two-step chemical method for the first time. A ZnO seed layer was firstly pre-coated on the O2-plasma treated substrate by sol-gel process, followed by the nucleation of ZnO nanostructures through hydrothermal synthesis. Nanostructures with different average diameter (15-250 nm), length (0.9-1.8 μm), density (0.9-16×109 cm-2) were obtained via adjusting the growth time and concentration of precursors. From the reflectivity spectra, we concluded ordered and taper nanostructures were preferential for photovoltaic applications. ZnO nanoneedles with an average diameter of 106 nm, a moderate length of 2.4 μm, and the density of 7.2×109 cm-2 could be synthesized in the concentration of 0.04 M for 18 h. Integrated with the nanoneedle array, the power conversion efficiency of single junction solar cell was increased from 7.3 to 12.2%, corresponding to a 67% improvement.




References:
[1] R. L. Hoffman, B. J. Norris, and J. F. Wager, "ZnO-based transparent
thin-film transistors," Appl. Phys. Lett., vol. 82, pp. 733-735, 2003
[2] J. Schrier, D. O. Demchenko, and L. W. Wang, "Optical properties of
ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications,"
Nano Lett., vol. 7, pp. 2377-2381, 2007.
[3] A. Tsukazaki,; A. Ohtomo, T. Onuma,; M. Ohtani, T. Makino, M.
Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H.
Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy
for p-type doping and light-emitting diode based on ZnO," Nat. Mater.,
vol. 4, pp. 42-45, 2005.
[4] L. J. Mandalapu, Z. Yang, S. Chu, and J. L. Liu, "Ultraviolet emission
from Sb-doped p-type ZnO based heterojunction light-emitting diodes,"
Appl. Phys. Lett., vol. 92, pp. 122101 1-3, 2008.
[5] J. B. Lee, M. H. Lee, C. K. Park, and J. S. Park, "Effects of lattice
mismatches in ZnO/substrate structures on the orientations of ZnO films
and characteristics of SAW devices," Thin Solid Films, vol. 447, pp.
296-300, 2004.
[6] S. Kar, B. N. Pal, S. Chaudhuri, and D. Chakravorty, "One-dimensional
ZnO nanostructure arrays: synthesis and characterization," J. Phys.
Chem. B, vol. 110, pp. 4605-4608, 2006.
[7] Y. Gao and M. Nagai, "Morphology evolution of ZnO thin films from
aqueous solutions and their application to solar cells," Langmuir, vol. 22,
pp. 3936-3939, 2006.
[8] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang,
"Fabrication of a highÔÇÉ brightness blueÔÇÉ lightÔÇÉ emitting diode using a
ZnOÔÇÉ nanowire array grown on p-GaN thin film," Adv. Mater., vol. 21,
pp. 2767-2770, 2009.
[9] S. S. Shinde, P. S. Patil, R. S. Gaikwad, R. S. Mane, B. N. Pawar, and K.
Y. Rajpure, "Influences in high quality zinc oxide films and their
photoelectrochemical performance," J. Alloy Compd., vol. 503, pp.
416-418, 2010.
[10] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L.
Vayssieres, "Hydrothermally grown oriented ZnO nanorod arrays for gas
sensing applications," Nanotechnol., vol. 17, pp. 4995-4998, 2006.
[11] B. Weintraub, Y. Deng, and Z. L. Wang, "Position-controlled seedless
growth of ZnO nanorod arrays on a polymer substrate via wet chemical
synthesis," J. Phys. Chem. C, vol. 111, pp. 10162-10165, 2007.
[12] Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng, and C. H. Liu,
"Ultraviolet ZnO nanorod photosensors," Langmuir, vol. 26, pp. 603-606,
2010.
[13] W. Lee, M. C. Jeong, and J. M. Myoung, "Ultraviolet electroluminescence
from controlled arsenic-doped ZnO nanowire homojunctions,"
Nanotechnol., vol. 15, vol. 254-257, 2004.
[14] Y. W. Heo, M. Kaufman, K. Pruessner, K. N. Siebein, D. P. Norton, and
F. Ren, "ZnO/cubic (Mg, Zn) O radial nanowire heterostructures," Appl.
Phys. A, vol. 80, pp. 263-266, 2005.
[15] B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, T. H. Wu, C. S.
Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, and S. Y. Chu, "Antireflective and
radiation resistant ZnO thin films for the efficiency enhancement of GaAs
photovoltaics," J. Electrochem. Soc., vol. 158, pp. H267-H270, 2011.
[16] C. Y. Cheng, F. C. N. Hong, and C. Y. Huang, "Micro-and nanopatterned
polymethylmethacrylate layers on plastic poly (ethylene terephthalate)
substrates by modified roller-reversal imprint process," J. Vac. Sci.
Technol. B, vol. 28, pp. 921-925, 2010.
[17] R. Ghosh, G. K. Paul, and D. Basak, "Effect of thermal annealing
treatment on structural, electrical and optical properties of transparent
sol-gel ZnO thin films," Mater. Res. Bull., vol. 40, pp. 1905-1908, 2005.
[18] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, and W.
Huang, "Growth mechanism of tubular ZnO formed in aqueous solution,"
Nanotechnol., vol. 17, pp. 1740-1744, 2006.
[19] M. Guo, P. Diao, and S. Cai, "Hydrothermal growth of well-aligned ZnO
nanorod arrays: Dependence of morphology and alignment ordering upon
preparing conditions," J. Solid State Chem., vol. 178, pp. 1864-1867,
2005.
[20] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R.
J. Saykally, and P. Yang, "Low-temperature wafer-scale production of
ZnO nanowire arrays," Angew. Chem. Int. Ed., vol. 42, pp. 3031-3034,
2003.
[21] D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, "Full day simulations
of anti-reflection coatings for flat plate silicon photovoltaics," Solar
Energy Materials & Solar Cells, vol. 81, pp. 13-24, 2003.