Microwave Assisted Fast Synthesis of Flower-like ZnO Based Guanidinium Template for Photodegradation of Azo Dye Congo Red

ZnO nanostructure were synthesized via microwave method using zinc acetate as starting material, guanidinium as structure directing agents, and water as solvent.. This work investigates the photodegradation of azo dyes using the ZnO Flowerlike in aqueous solutions. As synthesized ZnO samples were characterized using X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), and FTIR spectroscopy.In this work photodecolorization of congored azo dye under UV irradiation by nano ZnO was studied.

Using Exponential Lévy Models to Study Implied Volatility patterns for Electricity Options

German electricity European options on futures using Lévy processes for the underlying asset are examined. Implied volatility evolution, under each of the considered models, is discussed after calibrating for the Merton jump diffusion (MJD), variance gamma (VG), normal inverse Gaussian (NIG), Carr, Geman, Madan and Yor (CGMY) and the Black and Scholes (B&S) model. Implied volatility is examined for the entire sample period, revealing some curious features about market evolution, where data fitting performances of the five models are compared. It is shown that variance gamma processes provide relatively better results and that implied volatility shows significant differences through time, having increasingly evolved. Volatility changes for changed uncertainty, or else, increasing futures prices and there is evidence for the need to account for seasonality when modelling both electricity spot/futures prices and volatility.

A Grey-Fuzzy Controller for Optimization Technique in Wireless Networks

In wireless and mobile communications, this progress provides opportunities for introducing new standards and improving existing services. Supporting multimedia traffic with wireless networks quality of service (QoS). In this paper, a grey-fuzzy controller for radio resource management (GF-RRM) is presented to maximize the number of the served calls and QoS provision in wireless networks. In a wireless network, the call arrival rate, the call duration and the communication overhead between the base stations and the control center are vague and uncertain. In this paper, we develop a method to predict the cell load and to solve the RRM problem based on the GF-RRM, and support the present facility has been built on the application-level of the wireless networks. The GF-RRM exhibits the better adaptability, fault-tolerant capability and performance than other algorithms. Through simulations, we evaluate the blocking rate, update overhead, and channel acquisition delay time of the proposed method. The results demonstrate our algorithm has the lower blocking rate, less updated overhead, and shorter channel acquisition delay.

Stepwise Refinement in Executable-UML for Embedded System Design: A Preliminary Study

The fast growth in complexity coupled with requests for shorter development periods for embedded systems are bringing demands towards a more effective, i.e. higher-abstract, design process for hardaware/software integrated design. In Software Engineering area, Model Driven Architecture (MDA) and Executable UML (xUML) has been accepted to bring further improvement in software design. This paper constructs MDA and xUML stepwise transformations from an abstract specification model to a more concrete implementation model using the refactoring technique for hardaware/software integrated design. This approach provides clear and structured models which enables quick exploration and synthesis, and early stage verification.

Development and Usability Evaluation of Platform Independent Mobile Learning Tool(M-LT)

Mobile learning (M-learning) integrates mobile devices and wireless computing technology to enhance the current conventional learning system. However, there are constraints which are affecting the implementation of platform and device independent M-learning. The main aim of this research is to fulfill the following main objectives: to develop platform independent mobile learning tool (M-LT) for structured programming course, and evaluate its effectiveness and usability using ADDIE instructional design model (ISD) as M-LT life cycle. J2ME (Java 2 micro edition) and XML (Extensible Markup Language) were used to develop platform independent M-LT. It has two modules lecture materials and quizzes. This study used Quasi experimental design to measure effectiveness of the tool. Meanwhile, questionnaire is used to evaluate the usability of the tool. Finally, the results show that the system was effective and also usability evaluation was positive.

Towards a Sustainable Regeneration: The Case Study of the San Mateo Neighborhood, in Jerez de la Frontera (Andalusia)

Based on different experiences in the historic centers of Spain, we propose an global strategy for the regeneration of the pre-tertiary fabrics and its application to the specific case of San Mateo neighborhood, in Jerez de la Frontera (Andalusia), through a diagnosis that focus particularly on the punishments the last-decade economic situation (building boom and crisis) and shows the tragic transition from economic center to an imminent disappearance with an image similar to the ruins of war, due to the loss of their traditional roles. From it we will learn their historically-tested mechanisms of environment adaptation, which distill the vernacular architecture essence and that we will apply to our strategy of action based on a dotacional-and-free-space rhizome which rediscovers its hidden character. The architectural fact will be crystallized in one of the example-pieces proposed: The Artistic Revitalization Center.

Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm

In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.

How Efficiency of Password Attack Based on a Keyboard

At present, dictionary attack has been the basic tool for recovering key passwords. In order to avoid dictionary attack, users purposely choose another character strings as passwords. According to statistics, about 14% of users choose keys on a keyboard (Kkey, for short) as passwords. This paper develops a framework system to attack the password chosen from Kkeys and analyzes its efficiency. Within this system, we build up keyboard rules using the adjacent and parallel relationship among Kkeys and then use these Kkey rules to generate password databases by depth-first search method. According to the experiment results, we find the key space of databases derived from these Kkey rules that could be far smaller than the password databases generated within brute-force attack, thus effectively narrowing down the scope of attack research. Taking one general Kkey rule, the combinations in all printable characters (94 types) with Kkey adjacent and parallel relationship, as an example, the derived key space is about 240 smaller than those in brute-force attack. In addition, we demonstrate the method's practicality and value by successfully cracking the access password to UNIX and PC using the password databases created

Matlab/Simulink-Based Transient Stability Analysis Of A Sensorless Synchronous Reluctance Motor

This paper deals with stability analysis for synchronous reluctance motors drive. Special attention is paid to the transient performance with variations in motor's parameters such as Ld and Rs. A study of the dynamic control using d-q model is presented first in order to clarify the stability of the motor drive system. Based on the experimental parameters of the synchronous reluctance motor, this paper gives some simulation results using MATLAB/SIMULINK software packages. It is concluded that the motor parameters, especially Ld, affect the estimator stability and hence the whole drive system.

Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting

this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.

Dynamic Analysis of Nonlinear Models with Infinite Extension by Boundary Elements

The Time-Domain Boundary Element Method (TDBEM) is a well known numerical technique that handles quite properly dynamic analyses considering infinite dimension media. However, when these analyses are also related to nonlinear behavior, very complex numerical procedures arise considering the TD-BEM, which may turn its application prohibitive. In order to avoid this drawback and model nonlinear infinite media, the present work couples two BEM formulations, aiming to achieve the best of two worlds. In this context, the regions expected to behave nonlinearly are discretized by the Domain Boundary Element Method (D-BEM), which has a simpler mathematical formulation but is unable to deal with infinite domain analyses; the TD-BEM is employed as in the sense of an effective non-reflexive boundary. An iterative procedure is considered for the coupling of the TD-BEM and D-BEM, which is based on a relaxed renew of the variables at the common interfaces. Elastoplastic models are focused and different time-steps are allowed to be considered by each BEM formulation in the coupled analysis.

A Review on Terrestrial Multimedia Communication using OFDM Technology

The development of wireless communication technologies has changed our living style in global level. After the international success of mobile telephony standards, the location and time independent voice connection has become a default method in daily telecommunications. As for today, highly advanced multimedia messaging plays a key role in value added service handling. Along with evolving data services, the need for more complex applications can be seen, including the mobile usage of broadcast technologies. Here performance of a system design for terrestrial multimedia content is examined with emphasis on mobile reception. This review paper has accommodated the understanding of physical layer role and the flavour of terrestrial channel effects on the terrestrial multimedia transmission using OFDM keeping DVB-H as benchmark standard.

Resource Constraint Mobile Agent Framework For Ambient Intelligence

In this paper, we introduce an mobile agent framework with proactive load balancing for ambient intelligence (AmI) environments. One of the main obstacles of AmI is the scalability in which the openness of AmI environment introduces dynamic resource requirements on agencies. To mediate this scalability problem, our framework proposes a load balancing module to proactively analyze the resource consumption of network bandwidth and preferred agencies to suggest the optimal communication method to its user. The framework generally formulates an AmI environment that consists of three main components: (1) mobile devices, (2) hosts or agencies, and (3) directory service center (DSC). A preliminary implementation was conducted with NetLogo and the experimental results show that the proposed approach provides enhanced system performance by minimizing the network utilization to provide users with responsive services.

Sensor-Based Motion Planning for a Car-like Robot Based On Bug Family Algorithms

This paper presents a sensor-based motion planning algorithm for 3-DOF car-like robots with a nonholonomic constraint. Similar to the classic Bug family algorithms, the proposed algorithm enables the car-like robot to navigate in a completely unknown environment using only the range sensor information. The car-like robot uses the local range sensor view to determine the local path so that it moves towards the goal. To guarantee that the robot can approach the goal, the two modes of motion are repeated, termed motion-to-goal and wall-following. The motion-to-goal behavior lets the robot directly move toward the goal, and the wall-following behavior makes the robot circumnavigate the obstacle boundary until it meets the leaving condition. For each behavior, the nonholonomic motion for the car-like robot is planned in terms of the instantaneous turning radius. The proposed algorithm is implemented to the real robot and the experimental results show the performance of proposed algorithm.

Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler

This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.

Influence of Laminated Textile Structures on Mechanical Performance of NF-Epoxy Composites

Textile structures are engineered and fabricated to meet worldwide structural applications. Nevertheless, research varying textile structure on natural fibre as composite reinforcement was found to be very limited. Most of the research is focusing on short fibre and random discontinuous orientation of the reinforcement structure. Realizing that natural fibre (NF) composite had been widely developed to be used as synthetic fibre composite replacement, this research attempted to examine the influence of woven and cross-ply laminated structure towards its mechanical performances. Laminated natural fibre composites were developed using hand lay-up and vacuum bagging technique. Impact and flexural strength were investigated as a function of fibre type (coir and kenaf) and reinforcement structure (imbalanced plain woven, 0°/90° cross-ply and +45°/-45° cross-ply). Multi-level full factorial design of experiment (DOE) and analysis of variance (ANOVA) was employed to impart data as to how fibre type and reinforcement structure parameters affect the mechanical properties of the composites. This systematic experimentation has led to determination of significant factors that predominant influences the impact and flexural properties of the textile composites. It was proven that both fibre type and reinforcement structure demonstrated significant difference results. Overall results indicated that coir composite and woven structure exhibited better impact and flexural strength. Yet, cross-ply composite structure demonstrated better fracture resistance.

Particle Swarm Optimization with Reduction for Global Optimization Problems

This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization problems. When an objective function has a lot of local minimums complicatedly, the particle may fall into a local minimum. For avoiding the local minimum, a number of particles are initially prepared and their positions are updated by particle swarm optimization. Particles sequentially reduce to reach a predetermined number of them grounded in evaluation value and particle swarm optimization continues until the termination condition is met. In order to show the effectiveness of the proposed algorithm, we examine the minimum by using test functions compared to existing algorithms. Furthermore the influence of best value on the initial number of particles for our algorithm is discussed.

Development of Molecular Imprinted Polymers (MIPs) for the Selective Removal of Carbamazepine from Aqueous Solution

The occurrence and removal of trace organic contaminants in the aquatic environment has become a focus of environmental concern. For the selective removal of carbamazepine from loaded waters molecularly imprinted polymers (MIPs) were synthesized with carbamazepine as template. Parameters varied were the type of monomer, crosslinker, and porogen, the ratio of starting materials, and the synthesis temperature. Best results were obtained with a template to crosslinker ratio of 1:20, toluene as porogen, and methacrylic acid (MAA) as monomer. MIPs were then capable to recover carbamazepine by 93% from a 10-5 M landfill leachate solution containing also caffeine and salicylic acid. By comparison, carbamazepine recoveries of 75% were achieved using a nonimprinted polymer (NIP) synthesized under the same conditions, but without template. In landfill leachate containing solutions carbamazepine was adsorbed by 93-96% compared with an uptake of 73% by activated carbon. The best solvent for desorption was acetonitrile, with which the amount of solvent necessary and dilution with water was tested. Selected MIPs were tested for their reusability and showed good results for at least five cycles. Adsorption isotherms were prepared with carbamazepine solutions in the concentration range of 0.01 M to 5*10-6 M. The heterogeneity index showed a more homogenous binding site distribution.

Retrieving Extended High Dynamic Range from Digital Negative Image - An Experiment on Architectural Photo Imaging

The paper explores the development of an optimization of method and apparatus for retrieving extended high dynamic range from digital negative image. Architectural photo imaging can benefit from high dynamic range imaging (HDRI) technique for preserving and presenting sufficient luminance in the shadow and highlight clipping image areas. The HDRI technique that requires multiple exposure images as the source of HDRI rendering may not be effective in terms of time efficiency during the acquisition process and post-processing stage, considering it has numerous potential imaging variables and technical limitations during the multiple exposure process. This paper explores an experimental method and apparatus that aims to expand the dynamic range from digital negative image in HDRI environment. The method and apparatus explored is based on a single source of RAW image acquisition for the use of HDRI post-processing. It will cater the optimization in order to avoid and minimize the conventional HDRI photographic errors caused by different physical conditions during the photographing process and the misalignment of multiple exposed image sequences. The study observes the characteristics and capabilities of RAW image format as digital negative used for the retrieval of extended high dynamic range process in HDRI environment.