Informal Inferential Reasoning Using a Modelling Approach within a Computer-Based Simulation

The article investigates how 14- to 15- year-olds build informal conceptions of inferential statistics as they engage in a modelling process and build their own computer simulations with dynamic statistical software. This study proposes four primary phases of informal inferential reasoning for the students in the statistical modeling and simulation process. Findings show shifts in the conceptual structures across the four phases and point to the potential of all of these phases for fostering the development of students- robust knowledge of the logic of inference when using computer based simulations to model and investigate statistical questions.

A high Speed 8 Transistor Full Adder Design Using Novel 3 Transistor XOR Gates

The paper proposes the novel design of a 3T XOR gate combining complementary CMOS with pass transistor logic. The design has been compared with earlier proposed 4T and 6T XOR gates and a significant improvement in silicon area and power-delay product has been obtained. An eight transistor full adder has been designed using the proposed three-transistor XOR gate and its performance has been investigated using 0.15um and 0.35um technologies. Compared to the earlier designed 10 transistor full adder, the proposed adder shows a significant improvement in silicon area and power delay product. The whole simulation has been carried out using HSPICE.

Edge Detection in Digital Images Using Fuzzy Logic Technique

The fuzzy technique is an operator introduced in order to simulate at a mathematical level the compensatory behavior in process of decision making or subjective evaluation. The following paper introduces such operators on hand of computer vision application. In this paper a novel method based on fuzzy logic reasoning strategy is proposed for edge detection in digital images without determining the threshold value. The proposed approach begins by segmenting the images into regions using floating 3x3 binary matrix. The edge pixels are mapped to a range of values distinct from each other. The robustness of the proposed method results for different captured images are compared to those obtained with the linear Sobel operator. It is gave a permanent effect in the lines smoothness and straightness for the straight lines and good roundness for the curved lines. In the same time the corners get sharper and can be defined easily.

Asynchronous Microcontroller Simulation Model in VHDL

This article describes design of the 8-bit asynchronous microcontroller simulation model in VHDL. The model is created in ISE Foundation design tool and simulated in Modelsim tool. This model is a simple application example of asynchronous systems designed in synchronous design tools. The design process of creating asynchronous system with 4-phase bundled-data protocol and with matching delays is described in the article. The model is described in gate-level abstraction. The simulation waveform of the functional construction is the result of this article. Described construction covers only the simulation model. The next step would be creating synthesizable model to FPGA.

A novel Iterative Approach for Phase Noise Cancellation in Multi-Carrier Code Division Multiple Access (MC-CDMA) Systems

The aim of this paper is to emphasize and alleviate the effect of phase noise due to imperfect local oscillators on the performances of a Multi-Carrier CDMA system. After the cancellation of Common Phase Error (CPE), an iterative approach is introduced which iteratively estimates Inter-Carrier Interference (ICI) components in the frequency domain and cancels their contribution in the time domain. Simulation are conducted in order to investigate the achievable performances for several parameters, such as the spreading factor, the modulation order, the phase noise power and the transmission Signal-to-Noise Ratio.

Development of EPID-based Real time Dose Verification for Dynamic IMRT

An electronic portal image device (EPID) has become a method of patient-specific IMRT dose verification for radiotherapy. Research studies have focused on pre and post-treatment verification, however, there are currently no interventional procedures using EPID dosimetry that measure the dose in real time as a mechanism to ensure that overdoses do not occur and underdoses are detected as soon as is practically possible. As a result, an EPID-based real time dose verification system for dynamic IMRT was developed and was implemented with MATLAB/Simulink. The EPID image acquisition was set to continuous acquisition mode at 1.4 images per second. The system defined the time constraint gap, or execution gap at the image acquisition time, so that every calculation must be completed before the next image capture is completed. In addition, the

Performance Comparison between Sliding Mode Control (SMC) and PD-PID Controllers for a Nonlinear Inverted Pendulum System

The objective of this paper is to compare the time specification performance between conventional controller PID and modern controller SMC for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum-s angle and cart-s position. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. Two controllers are presented such as Sliding Mode Control (SMC) and Proportional- Integral-Derivatives (PID) controllers for controlling the highly nonlinear system of inverted pendulum model. Simulation study has been done in Matlab Mfile and simulink environment shows that both controllers are capable to control multi output inverted pendulum system successfully. The result shows that Sliding Mode Control (SMC) produced better response compared to PID control strategies and the responses are presented in time domain with the details analysis.

Designing Transcutaneous Inductive Powering Links for Implanted Micro-System Device

This paper presented a proposed design for transcutaneous inductive powering links. The design used to transfer power and data to the implanted devices such as implanted Microsystems to stimulate and monitoring the nerves and muscles. The system operated with low band frequency 13.56 MHZ according to industrial- scientific – medical (ISM) band to avoid the tissue heating. For external part, the modulation index is 13 % and the modulation rate 7.3% with data rate 1 Mbit/s assuming Tbit=1us. The system has been designed using 0.35-μm fabricated CMOS technology. The mathematical model is given and the design is simulated using OrCAD P Spice 16.2 software tool and for real-time simulation the electronic workbench MULISIM 11 has been used. The novel circular plane (pancake) coils was simulated using ANSOFT- HFss software.

Random Projections for Dimensionality Reduction in ICA

In this paper we present a technique to speed up ICA based on the idea of reducing the dimensionality of the data set preserving the quality of the results. In particular we refer to FastICA algorithm which uses the Kurtosis as statistical property to be maximized. By performing a particular Johnson-Lindenstrauss like projection of the data set, we find the minimum dimensionality reduction rate ¤ü, defined as the ratio between the size k of the reduced space and the original one d, which guarantees a narrow confidence interval of such estimator with high confidence level. The derived dimensionality reduction rate depends on a system control parameter β easily computed a priori on the basis of the observations only. Extensive simulations have been done on different sets of real world signals. They show that actually the dimensionality reduction is very high, it preserves the quality of the decomposition and impressively speeds up FastICA. On the other hand, a set of signals, on which the estimated reduction rate is greater than 1, exhibits bad decomposition results if reduced, thus validating the reliability of the parameter β. We are confident that our method will lead to a better approach to real time applications.

A Grid Current-controlled Inverter with Particle Swarm Optimization MPPT for PV Generators

This paper proposes a three-phase four-wire currentcontrolled Voltage Source Inverter (CC-VSI) for both power quality improvement and PV energy extraction. For power quality improvement, the CC-VSI works as a grid current-controlling shunt active power filter to compensate for harmonic and reactive power of loads. Then, the PV array is coupled to the DC bus of the CC-VSI and supplies active power to the grid. The MPPT controller employs the particle swarm optimization technique. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to PV maximum power. The PSO method is simple and effective especially for a partially shaded PV array. From computer simulation results, it proves that grid currents are sinusoidal and inphase with grid voltages, while the PV maximum active power is delivered to loads.

Object Alignment for Military Optical Surveillance

Electro-optical devices are increasingly used for military sea-, land- and air applications to detect, recognize and track objects. Typically, these devices produce video information that is presented to an operator. However, with increasing availability of electro-optical devices the data volume is becoming very large, creating a rising need for automated analysis. In a military setting, this typically involves detecting and recognizing objects at a large distance, i.e. when they are difficult to distinguish from background and noise. One may consider combining multiple images from a video stream into a single enhanced image that provides more information for the operator. In this paper we investigate a simple algorithm to enhance simulated images from a military context and investigate how the enhancement is affected by various types of disturbance.

PAPR Reduction Method for OFDM Signalby Using Dummy Sub-carriers

One of the disadvantages of using OFDM is the larger peak to averaged power ratio (PAPR) in its time domain signal. The larger PAPR signal would course the fatal degradation of bit error rate performance (BER) due to the inter-modulation noise in the nonlinear channel. This paper proposes an improved DSI (Dummy Sequence Insertion) method, which can achieve the better PAPR and BER performances. The feature of proposed method is to optimize the phase of each dummy sub-carrier so as to reduce the PAPR performance by changing all predetermined phase coefficients in the time domain signal, which is calculated for data sub-carriers and dummy sub-carriers separately. To achieve the better PAPR performance, this paper also proposes to employ the time-frequency domain swapping algorithm for fine adjustment of phase coefficient of the dummy subcarriers, which can achieve the less complexity of processing and achieves the better PAPR and BER performances than those for the conventional DSI method. This paper presents various computer simulation results to verify the effectiveness of proposed method as comparing with the conventional methods in the non-linear channel.

Immobilization of Simulated High Level Nuclear Wastes with Li2O-CeO2-Fe2O3-P2O5 Glasses

The leaching behavior and structure of Li2O-CeO2- Fe2O3-P2O5 glasses incorporated with simulated high level nuclear wastes (HLW) were studied. The leach rates of gross and each constituent element were determined from the total weight loss of the specimen and the leachate analyses by inductively coupled argon plasma spectroscopy (ICP). The gross leach rate of the 4.5Li2O- 9.7CeO2-34.7Fe2O3-51.5P2O5 glass waste form containing 45 mass% simulated HLW is of the order of 10

Impact of MAC Layer on the Performance of Routing Protocols in Mobile Ad hoc Networks

Mobile Ad hoc Networks is an autonomous system of mobile nodes connected by multi-hop wireless links without centralized infrastructure support. As mobile communication gains popularity, the need for suitable ad hoc routing protocols will continue to grow. Efficient dynamic routing is an important research challenge in such a network. Bandwidth constrained mobile devices use on-demand approach in their routing protocols because of its effectiveness and efficiency. Many researchers have conducted numerous simulations for comparing the performance of these protocols under varying conditions and constraints. Most of them are not aware of MAC Protocols, which will impact the relative performance of routing protocols considered in different network scenarios. In this paper we investigate the choice of MAC protocols affects the relative performance of ad hoc routing protocols under different scenarios. We have evaluated the performance of these protocols using NS2 simulations. Our results show that the performance of routing protocols of ad hoc networks will suffer when run over different MAC Layer protocols.

Improving Packet Latency of Video Sensor Networks

Video sensor networks operate on stringent requirements of latency. Packets have a deadline within which they have to be delivered. Violation of the deadline causes a packet to be treated as lost and the loss of packets ultimately affects the quality of the application. Network latency is typically a function of many interacting components. In this paper, we propose ways of reducing the forwarding latency of a packet at intermediate nodes. The forwarding latency is caused by a combination of processing delay and queueing delay. The former is incurred in order to determine the next hop in dynamic routing. We show that unless link failures in a very specific and unlikely pattern, a vast majority of these lookups are redundant. To counter this we propose source routing as the routing strategy. However, source routing suffers from issues related to scalability and being impervious to network dynamics. We propose solutions to counter these and show that source routing is definitely a viable option in practical sized video networks. We also propose a fast and fair packet scheduling algorithm that reduces queueing delay at the nodes. We support our claims through extensive simulation on realistic topologies with practical traffic loads and failure patterns.

Stabilization of the Lorenz Chaotic Equations by Fuzzy Controller

In this paper, a fuzzy controller is designed for stabilization of the Lorenz chaotic equations. A simple Mamdani inference method is used for this purpose. This method is very simple and applicable for complex chaotic systems and it can be implemented easily. The stability of close loop system is investigated by the Lyapunov stabilization criterion. A Lyapunov function is introduced and the global stability is proven. Finally, the effectiveness of this method is illustrated by simulation results and it is shown that the performance of the system is improved.

VoIP and Database Traffic Co-existence over IEEE 802.11b WLAN with Redundancy

This paper presents the findings of two experiments that were performed on the Redundancy in Wireless Connection Model (RiWC) using the 802.11b standard. The experiments were simulated using OPNET 11.5 Modeler software. The first was aimed at finding the maximum number of simultaneous Voice over Internet Protocol (VoIP) users the model would support under the G.711 and G.729 codec standards when the packetization interval was 10 milliseconds (ms). The second experiment examined the model?s VoIP user capacity using the G.729 codec standard along with background traffic using the same packetization interval as in the first experiment. To determine the capacity of the model under various experiments, we checked three metrics: jitter, delay and data loss. When background traffic was added, we checked the response time in addition to the previous three metrics. The findings of the first experiment indicated that the maximum number of simultaneous VoIP users the model was able to support was 5, which is consistent with recent research findings. When using the G.729 codec, the model was able to support up to 16 VoIP users; similar experiments in current literature have indicated a maximum of 7 users. The finding of the second experiment demonstrated that the maximum number of VoIP users the model was able to support was 12, with the existence of background traffic.

The Integrated Studies of Infectious Disease Using Mathematical Modeling and Computer Simulation

In this paper we develop and analyze the model for the spread of Leptospirosis by age group in Thailand, between 1997 and 2010 by using mathematical modeling and computer simulation. Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. It is a zoonotic disease of global importance and an emerging health problem in Thailand. In Thailand, leptospirosis is a reportable disease, the top three age groups are 23.31% in 35-44 years olds group, 22.76% in 25-34 year olds group, 17.60% in 45-54 year olds group from reported leptospirosis between 1997 and 2010, with a peak in 35-44 year olds group. Our paper, the Leptosipirosis transmission by age group in Thailand is studied on the mathematical model. Some analytical and simulation results are presented.

Design of SiC Capacitive Pressure Sensor with LC-Based Oscillator Readout Circuit

This paper presents the characterization and design of a capacitive pressure sensor with LC-based 0.35 µm CMOS readout circuit. SPICE is employed to evaluate the characteristics of the readout circuit and COMSOL multiphysics structural analysis is used to simulate the behavior of the pressure sensor. The readout circuit converts the capacitance variation of the pressure sensor into the frequency output. Simulation results show that the proposed pressure sensor has output frequency from 2.50 to 2.28 GHz in a pressure range from 0.1 to 2 MPa almost linearly. The sensitivity of the frequency shift with respect to the applied pressure load is 0.11 GHz/MPa.

The Comparison Study of Harmonic Detection Methods for Shunt Active Power Filters

The paper deals with the comparison study of harmonic detection methods for a shunt active power filter. The %THD and the power factor value at the PCC point after compensation are considered for the comparison. There are three harmonic detection methods used in the paper that are synchronous reference frame method, synchronous detection method, and DQ axis with Fourier method. In addition, the ideal current source is used to represent the active power filter by assuming an infinitely fast controller action of the active power filter. The simulation results show that the DQ axis with Fourier method provides the minimum %THD after compensation compared with other methods. However, the power factor value at the PCC point after compensation is slightly lower than that of synchronous detection method.