Abstract: The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.
Abstract: This paper presents the comparison study of current control techniques for shunt active power filter. The hysteresis current control, the delta modulation control and the carrier-based PWM control are considered in the paper. The synchronous detection method is used to calculate the reference currents for shunt active power filter. The simulation results show that the carrier-based PWM control technique provides the minimum %THD value of the source currents compared with other comparable techniques after compensation. However, the %THD values of all three techniques can follow the IEEE std.519-1992.
Abstract: Dynamic models of power converters are normally
time-varying because of their switching actions. Several approaches
are applied to analyze the power converters to achieve the timeinvariant
models suitable for system analysis and design via the
classical control theory. The paper presents how to derive dynamic
models of the power system consisting of a three-phase controlled
rectifier feeding an uncontrolled buck converter by using the
combination between the well known techniques called the DQ and
the generalized state-space averaging methods. The intensive timedomain
simulations of the exact topology model are used to support
the accuracies of the reported model. The results show that the
proposed model can provide good accuracies in both transient and
steady-state responses.
Abstract: This paper presents the averaging model of a buck
converter derived from the generalized state-space averaging method.
The sliding mode control is used to regulate the output voltage of the
converter and taken into account in the model. The proposed model
requires the fast computational time compared with those of the full
topology model. The intensive time-domain simulations via the exact
topology model are used as the comparable model. The results show
that a good agreement between the proposed model and the switching
model is achieved in both transient and steady-state responses. The
reported model is suitable for the optimal controller design by using
the artificial intelligence techniques.
Abstract: This paper aims to present the reviews of the
application of neural network in shunt active power filter (SAPF).
From the review, three out of four components of SAPF structure,
which are harmonic detection component, compensating current
control, and DC bus voltage control, have been adopted some of
neural network architecture as part of its component or even
substitution. The objectives of most papers in using neural network in
SAPF are to increase the efficiency, stability, accuracy, robustness,
tracking ability of the systems of each component. Moreover,
minimizing unneeded signal due to the distortion is the ultimate goal
in applying neural network to the SAPF. The most famous
architecture of neural network in SAPF applications are ADALINE
and Backpropagation (BP).
Abstract: The paper presents the applications of artificial
intelligence technique called adaptive tabu search to design the
controller of a buck converter. The averaging model derived from the
DQ and generalized state-space averaging methods is applied to
simulate the system during a searching process. The simulations
using such averaging model require the faster computational time
compared with that of the full topology model from the software
packages. The reported model is suitable for the work in the paper in
which the repeating calculation is needed for searching the best
solution. The results will show that the proposed design technique
can provide the better output waveforms compared with those
designed from the classical method.
Abstract: This paper presents the mathematical model and
control strategy on DQ frame of shunt active power filter. The
structure of the shunt active power filter is the voltage source inverter
(VSI). The pulse width modulation (PWM) with PI controller is used
in the paper. The concept of DQ frame to apply with the shunt active
power filter is described. Moreover, the detail of the PI controller
design for two current loops and one voltage loop are fully explained.
The DQ axis with Fourier (DQF) method is applied to calculate the
reference currents on DQ frame. The simulation results show that the
control strategy and the design method presented in the paper can
provide the good performance of the shunt active power filter.
Moreover, the %THD of the source currents after compensation can
follow the IEEE Std.519-1992.
Abstract: The paper deals with the comparison study of
harmonic detection methods for a shunt active power filter. The
%THD and the power factor value at the PCC point after
compensation are considered for the comparison. There are three
harmonic detection methods used in the paper that are synchronous
reference frame method, synchronous detection method, and DQ axis
with Fourier method. In addition, the ideal current source is used to
represent the active power filter by assuming an infinitely fast
controller action of the active power filter. The simulation results
show that the DQ axis with Fourier method provides the minimum
%THD after compensation compared with other methods. However,
the power factor value at the PCC point after compensation is slightly
lower than that of synchronous detection method.
Abstract: This paper presents the optimal controller design of
the generator control unit in the aircraft power system. The adaptive
tabu search technique is applied to tune the controller parameters
until the best terminal output voltage of generator is achieved. The
output response from the system with the controllers designed by the
proposed technique is compared with those from the conventional
method. The transient simulations using the commercial software
package show that the controllers designed from the adaptive tabu
search algorithm can provide the better output performance compared
with the result from the classical method. The proposed design
technique is very flexible and useful for electrical aircraft engineers.