Abstract: Dynamic models of power converters are normally
time-varying because of their switching actions. Several approaches
are applied to analyze the power converters to achieve the timeinvariant
models suitable for system analysis and design via the
classical control theory. The paper presents how to derive dynamic
models of the power system consisting of a three-phase controlled
rectifier feeding an uncontrolled buck converter by using the
combination between the well known techniques called the DQ and
the generalized state-space averaging methods. The intensive timedomain
simulations of the exact topology model are used to support
the accuracies of the reported model. The results show that the
proposed model can provide good accuracies in both transient and
steady-state responses.
Abstract: This paper proposes two types of non-isolated
direct AC-DC converters. First, it shows a buck-boost
converter with an H-bridge, which requires few components
(three switches, two diodes, one inductor and one capacitor) to
convert AC input to DC output directly. This circuit can handle
a wide range of output voltage. Second, a direct AC-DC buck
converter is proposed for lower output voltage applications.
This circuit is analyzed with output voltage of 12V. We
describe circuit topologies, operation principles and simulation
results for both circuits.
Abstract: This paper presents the averaging model of a buck
converter derived from the generalized state-space averaging method.
The sliding mode control is used to regulate the output voltage of the
converter and taken into account in the model. The proposed model
requires the fast computational time compared with those of the full
topology model. The intensive time-domain simulations via the exact
topology model are used as the comparable model. The results show
that a good agreement between the proposed model and the switching
model is achieved in both transient and steady-state responses. The
reported model is suitable for the optimal controller design by using
the artificial intelligence techniques.