Abstract: Dynamic models of power converters are normally
time-varying because of their switching actions. Several approaches
are applied to analyze the power converters to achieve the timeinvariant
models suitable for system analysis and design via the
classical control theory. The paper presents how to derive dynamic
models of the power system consisting of a three-phase controlled
rectifier feeding an uncontrolled buck converter by using the
combination between the well known techniques called the DQ and
the generalized state-space averaging methods. The intensive timedomain
simulations of the exact topology model are used to support
the accuracies of the reported model. The results show that the
proposed model can provide good accuracies in both transient and
steady-state responses.
Abstract: This paper presents the averaging model of a buck
converter derived from the generalized state-space averaging method.
The sliding mode control is used to regulate the output voltage of the
converter and taken into account in the model. The proposed model
requires the fast computational time compared with those of the full
topology model. The intensive time-domain simulations via the exact
topology model are used as the comparable model. The results show
that a good agreement between the proposed model and the switching
model is achieved in both transient and steady-state responses. The
reported model is suitable for the optimal controller design by using
the artificial intelligence techniques.
Abstract: The paper presents the applications of artificial
intelligence technique called adaptive tabu search to design the
controller of a buck converter. The averaging model derived from the
DQ and generalized state-space averaging methods is applied to
simulate the system during a searching process. The simulations
using such averaging model require the faster computational time
compared with that of the full topology model from the software
packages. The reported model is suitable for the work in the paper in
which the repeating calculation is needed for searching the best
solution. The results will show that the proposed design technique
can provide the better output waveforms compared with those
designed from the classical method.