The Path to Wellbeing: The Role of Work-Family Conflict, Family-Work Conflict and Psychological Strain

Although considerable amount of research has attested to the link between work-to-family conflict (WFC) and family-to-work conflict (FWC) and psychological strain and wellbeing, there is a paucity of research investigating the phenomenon in the context of social workers. Moreover, very little is known about the impact of WFC and FWC in developing countries. The present study investigated the mediating effect of psychological strain on the relationship between WFC and FWC with wellbeing of social workers in India. Our findings show that WFC and FWC are influential antecedents of wellbeing; their influence is both direct on psychological strain, and indirect on wellbeing transmitted through psychological strain. Implications of the findings are discussed.

Coherence Analysis for Epilepsy Patients: An MEG Study

It is crucial to quantitatively evaluate the treatment of epilepsy patients. This study was undertaken to test the hypothesis that compared to the healthy control subjects, the epilepsy patients have abnormal resting-state connectivity. In this study, we used the imaginary part of coherency to measure the resting-state connectivity. The analysis results shown that compared to the healthy control subjects, epilepsy patients tend to have abnormal rhythm brain connectivity over their epileptic focus.

Well-Being in Adolescence: Fitting Measurement Model

Well-being has been given special emphasis in quality of life. It involves living a meaningful, life satisfaction, stability and happiness in life. Well-being also concerns the satisfaction of physical, psychological, social needs and demands of an individual. The purpose of this study was to validate three-factor measurement model of well-being using structural equation modeling (SEM). The conceptions of well-being measured such dimensions as physical, psychological and social well-being. This study was done based on a total sample of 650 adolescents from east-coast of peninsular Malaysia. The Well-Being Scales which was adapted from [1] was used in this study. The items were hypothesized a priori to have nonzero loadings on all dimensions in the model. The findings of the SEM demonstrated that it is a good fitting model which the proposed model fits the driving theory; (x2df = 1.268; GFI = .994; CFI = .998; TLI= .996; p = .255; RMSEA = .021). Composite reliability (CR) was .93 and average variance extracted (AVE) was 58%. The model in this study fits with the sample of data and well-being is important to bring sustainable development to the mainstream.

Distributed 2-Vertex Connectivity Test of Graphs Using Local Knowledge

The vertex connectivity of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. This work is devoted to the problem of vertex connectivity test of graphs in a distributed environment based on a general and a constructive approach. The contribution of this paper is threefold. First, using a preconstructed spanning tree of the considered graph, we present a protocol to test whether a given graph is 2-connected using only local knowledge. Second, we present an encoding of this protocol using graph relabeling systems. The last contribution is the implementation of this protocol in the message passing model. For a given graph G, where M is the number of its edges, N the number of its nodes and Δ is its degree, our algorithms need the following requirements: The first one uses O(Δ×N2) steps and O(Δ×logΔ) bits per node. The second one uses O(Δ×N2) messages, O(N2) time and O(Δ × logΔ) bits per node. Furthermore, the studied network is semi-anonymous: Only the root of the pre-constructed spanning tree needs to be identified.

Mechanical Design and Theoretical Analysis of a Four Fingered Prosthetic Hand Incorporating Embedded SMA Bundle Actuators

The psychological and physical trauma associated with the loss of a human limb can severely impact on the quality of life of an amputee rendering even the most basic of tasks very difficult. A prosthetic device can be of great benefit to the amputee in the performance of everyday human tasks. This paper outlines a proposed mechanical design of a 12 degree-of-freedom SMA actuated artificial hand. It is proposed that the SMA wires be embedded intrinsically within the hand structure which will allow for significant flexibility for use either as a prosthetic hand solution, or as part of a complete lower arm prosthetic solution. A modular approach is taken in the design facilitating ease of manufacture and assembly, and more importantly, also allows the end user to easily replace SMA wires in the event of failure. A biomimetric approach has been taken during the design process meaning that the artificial hand should replicate that of a human hand as far as is possible with due regard to functional requirements. The proposed design has been exposed to appropriate loading through the use of finite element analysis (FEA) to ensure that it is structurally sound. Theoretical analysis of the mechanical framework was also carried out to establish the limits of the angular displacement and velocity of the finger tip as well finger tip force generation. A combination of various polymers and Titanium, which are suitably lightweight, are proposed for the manufacture of the design.

Discovering Complex Regularities: from Tree to Semi-Lattice Classifications

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.

Study of Damage in Beams with Different Boundary Conditions

–In this paper the damage in clamped-free, clampedclamped and free-free beam are analyzed considering samples without and with structural modifications. The damage location is investigated by the use of the bispectrum and wavelet analysis. The mathematical models are obtained using 2D elasticity theory and the Finite Element Method (FEM). The numerical and experimental data are approximated using the Particle Swarm Optimizer (PSO) method and this way is possible to adjust the localization and the severity of the damage. The experimental data are obtained through accelerometers placed along the sample. The system is excited using impact hammer.

The Structure of Weakly Left C-wrpp Semigroups

In this paper, the class of weakly left C-wrpp semigroups which includes the class of weakly left C-rpp semigroups as a subclass is introduced. To particularly show that the spined product of a left C-wrpp semigroup and a right normal band which is a weakly left C-wrpp semifroup by virtue of left C-full Ehremann cyber groups recently obtained by authors Li-Shum, results obtained by Tang and Du-Shum are extended and strengthened.

Practical Method for Digital Music Matching Robust to Various Sound Qualities

In this paper, we propose a practical digital music matching system that is robust to variation in sound qualities. The proposed system is subdivided into two parts: client and server. The client part consists of the input, preprocessing and feature extraction modules. The preprocessing module, including the music onset module, revises the value gap occurring on the time axis between identical songs of different formats. The proposed method uses delta-grouped Mel frequency cepstral coefficients (MFCCs) to extract music features that are robust to changes in sound quality. According to the number of sound quality formats (SQFs) used, a music server is constructed with a feature database (FD) that contains different sub feature databases (SFDs). When the proposed system receives a music file, the selection module selects an appropriate SFD from a feature database; the selected SFD is subsequently used by the matching module. In this study, we used 3,000 queries for matching experiments in three cases with different FDs. In each case, we used 1,000 queries constructed by mixing 8 SQFs and 125 songs. The success rate of music matching improved from 88.6% when using single a single SFD to 93.2% when using quadruple SFDs. By this experiment, we proved that the proposed method is robust to various sound qualities.

Reservoir Operating by Ant Colony Optimization for Continuous Domains (ACOR) Case Study: Dez Reservoir

A direct search approach to determine optimal reservoir operating is proposed with ant colony optimization for continuous domains (ACOR). The model is applied to a system of single reservoir to determine the optimum releases during 42 years of monthly steps. A disadvantage of ant colony based methods and the ACOR in particular, refers to great amount of computer run time consumption. In this study a highly effective procedure for decreasing run time has been developed. The results are compared to those of a GA based model.

Variable Structure Model Reference Adaptive Control for Vehicle Steering System

A variable structure model reference adaptive control (VS-MRAC) strategy for active steering assistance of a two wheel steering car is proposed. An ideal steering system with fixed properties and moving on an ideal road is used as the reference model, and the active steering assistance system is forced to attain the same behavior as the reference model. The proposed system can treat the nonlinear relationships between the side slip angles and lateral forces on tire, and the uncertainties on friction of the road surface, whose compensation are very important under critical situations. Simulation results show improvements on yaw rate and side slip.

Swarmed Discriminant Analysis for Multifunction Prosthesis Control

One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.

Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition

An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.

Smart Spoiler for Race Car

A pressure-based implicit procedure to solve Navier- Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is used to simulate flow around the smart and conventional flaps of spoiler under the ground effect. Cantilever beam with uniformly varying load with roller support at the free end is considered for smart flaps. The boundedness criteria for this procedure are determined from a Normalized Variable diagram (NVD) scheme. The procedure incorporates es the k -ε eddyviscosity turbulence model. The method is first validated against experimental data. Then, the algorithm is applied for turbulent aerodynamic flows around a spoiler section with smart and conventional flaps for different attack angle, flap angle and ground clearance where the results of two flaps are compared.

Phenology of the Parah tree (Elateriospermumtapos) using a GAPS Model

This work investigated the phenology of Parah tree (Elateriospermum tapos) using the General Purpose Atmosphere Plant Soil Simulator (GAPS model) to determine the amount of Plant Available Water (PAW) in the soil. We found the correlation between PAW and the timing of budburst and flower burst at Khao Nan National Park, Nakhon Si Thammarat, Thailand. PAW from the GAPS model can be used as an indicator of soil water stress. The low amount of PAW may lead to leaf shedding in Parah trees.

Is Cognitive Dissonance an Intrinsic Property of the Human Mind? An Experimental Solution to a Half-Century Debate

Cognitive Dissonance can be conceived both as a concept related to the tendency to avoid internal contradictions in certain situations, and as a higher order theory about information processing in the human mind. In the last decades, this last sense has been strongly surpassed by the former, as nearly all experiment on the matter discuss cognitive dissonance as an output of motivational contradictions. In that sense, the question remains: is cognitive dissonance a process intrinsically associated with the way that the mind processes information, or is it caused by such specific contradictions? Objective: To evaluate the effects of cognitive dissonance in the absence of rewards or any mechanisms to manipulate motivation. Method: To solve this question, we introduce a new task, the hypothetical social arrays paradigm, which was applied to 50 undergraduate students. Results: Our findings support the perspective that the human mind shows a tendency to avoid internal dissonance even when there are no rewards or punishment involved. Moreover, our findings also suggest that this principle works outside the conscious level.

Solving the Economic Dispatch Problem using Novel Particle Swarm Optimization

This paper proposes an improved approach based on conventional particle swarm optimization (PSO) for solving an economic dispatch(ED) problem with considering the generator constraints. The mutation operators of the differential evolution (DE) are used for improving diversity exploration of PSO, which called particle swarm optimization with mutation operators (PSOM). The mutation operators are activated if velocity values of PSO nearly to zero or violated from the boundaries. Four scenarios of mutation operators are implemented for PSOM. The simulation results of all scenarios of the PSOM outperform over the PSO and other existing approaches which appeared in literatures.

A Clock Skew Minimization Technique Considering Temperature Gradient

The trend of growing density on chips has increases not only the temperature in chips but also the gradient of the temperature depending on locations. In this paper, we propose the balanced skew tree generation technique for minimizing the clock skew that is affected by the temperature gradients on chips. We calculate the interconnect delay using Elmore delay equation, and find out the optimal balanced clock tree by modifying the clock trees generated through the Deferred Merge Embedding(DME) algorithm. The experimental results show that the distance variance of clock insertion points with and without considering the temperature gradient can be lowered below 54% and we confirm that the skew is remarkably decreased after applying the proposed technique.

Age at First Marriage for Husband and Wife between Muslim and Santal Communities in Rural Bangladesh: A Cross-Cultural Perspective

Age at first marriage is a basic temporal term that is culturally constructed for marriage relationship between an adult male and an adult female intended to have sex, to reproduce and to adapt to environment from one generation to another around the world. Cross-cultural evidences suggest that age at first marriage for both male and female not only varies across the cultures, but also varies among the subcultures of the same society. The purpose of the study was to compare age at first marriage for husband and wife including age differences between them between Muslim and Santal communities in rural Bangladesh. For this we hypothesized that (1) there were significant differences in age at first marriage and age interval between husband and wife between Muslim and Santal communities in rural Bangladesh. In so doing, 288 couples (145 pairs of couples for Muslim and 143 pairs of couples for Santal) were selected by cluster random sampling from the Kalna village situated in the Tanore Upazila of Rajshahi district, Bangladesh, whose current mean age range was 36.59 years for husband and 28.85 years for wife for the Muslim and 31.74 years for husband and 25.21 years for wife for the Santal respectively. The results of Independent Sample t test showed that mean age at first marriage for the Muslim samples was 23.05 years for husbands and 15.11 years for wives, while mean age at first marriage for the Santal samples was 20.71 years for husbands and 14.34 years for wives respectively that were significantly different at p0.05) among the selected husbands and wives between the two communities. This study recommends that further cross-cultural researches should be done on the causeeffect relationships between socio-cultural factors and age at marriage between the two communities in Bangladesh.

Unscented Transformation for Estimating the Lyapunov Exponents of Chaotic Time Series Corrupted by Random Noise

Many systems in the natural world exhibit chaos or non-linear behavior, the complexity of which is so great that they appear to be random. Identification of chaos in experimental data is essential for characterizing the system and for analyzing the predictability of the data under analysis. The Lyapunov exponents provide a quantitative measure of the sensitivity to initial conditions and are the most useful dynamical diagnostic for chaotic systems. However, it is difficult to accurately estimate the Lyapunov exponents of chaotic signals which are corrupted by a random noise. In this work, a method for estimation of Lyapunov exponents from noisy time series using unscented transformation is proposed. The proposed methodology was validated using time series obtained from known chaotic maps. In this paper, the objective of the work, the proposed methodology and validation results are discussed in detail.