A Linguistic Analysis of the Inconsistencies in the Meaning of Some -er Suffix Morphemes

English like any other language is rich by means of arbitrary, conventional, symbols which lend it to lot of inconsistencies in spelling, phonology, syntax, and morphology. The research examines the irregularities prevalent in the structure and meaning of some ‘er’ lexical items in English and its implication to vocabulary acquisition. It centers its investigation on the derivational suffix ‘er’, which changes the grammatical category of word. English language poses many challenges to Second Language Learners because of its irregularities, exceptions, and rules. One of the meaning of –er derivational suffix is someone or somebody who does something. This rule often confuses the learners when they meet with the exceptions in normal discourse. The need to investigate instances of such inconsistencies in the formation of –er words and the meanings given to such words by the students motivated this study. For this purpose, some senior secondary two (SS2) students in six randomly selected schools in the metropolis were provided a large number of alphabetically selected ‘er’ suffix ending words, The researcher opts for a test technique, which requires them to provide the meaning of the selected words with- er. The marking of the test was scored on the scale of 1-0, where correct formation of –er word and meaning is scored one while wrong formation and meaning is scored zero. The number of wrong and correct formations of –er words meaning were calculated using percentage. The result of this research shows that a large number of students made wrong generalization of the meaning of the selected -er ending words. This shows how enormous the inconsistencies are in English language and how are affect the learning of English. Findings from the study revealed that though students mastered the basic morphological rules but the errors are generally committed on those vocabulary items that are not frequently in use. The study arrives at this conclusion from the survey of their textbook and their spoken activities. Therefore, the researcher recommends that there should be effective reappraisal of language teaching through implementation of the designed curriculum to reflect on modern strategies of teaching language, identification, and incorporation of the exceptions in rigorous communicative activities in language teaching, language course books and tutorials, training and retraining of teachers on the strategies that conform to the new pedagogy.

Design of Reconfigurable 2 Way Wilkinson Power Divider for WLAN Applications

A Reconfigurable Wilkinson power divider is proposed in this paper. In existing system only a limited number of bandwidth is used at the output ports, in the proposed Wilkinson power divider different band of frequencies are obtained by using PIN diode. By tuning the PIN diode, different frequencies are achieved. The size of the power divider is reduced for the operating frequency and increases the fractional bandwidth.

Evaluation of Bakery Products Made from Barley-Gelatinized Corn Flour and Wheat-Defatted Rice Bran Flour Composites

In the present research, whole meal barley flour (WBF) was supplemented with gelatinized corn flour (GCF) in 0 and 30%. Whole meal wheat flour (WWF) was mixed with defatted rice bran (DRB) to produce 0, 20, 25, and 30% replacement levels. Rheological properties of dough were studied. Thermal properties and starch crystallinity of flours were evaluated. Flat bread, balady bread and pie were prepared from the different flour blends. The different bakeries were sensory evaluated. Color of raw materials and crust of bakery products were determined. Nutrients contents of raw flours and food products were assessed. Results showed that addition of GCF to WBF increased the viscosity and falling number of the produced dough. Water absorption, dough development time and dough stability increased with increasing the level of DRB in dough while, weakening and mixing tolerance index decreased. Extensibility and energy decreased, while, resistance to extension increased as DRB level increased. Gelatinized temperature of WWF, WBF, GCF, and DRB were 13.26, 35.09, 28.33, and 39.63, respectively. Starch crystallinity was affected when DRB was added to WWF. The highest protein content was present in balady bread made from 70% WWF and 30% DRB. The highest calcium, phosphorus, and potassium levels were present in products made from 100% WBF. Sensory attributes of the products were slightly affected by adding DRB and GCF. Conclusion: Addition of DRB or GCF to WWF or WBF, respectively affect the physical, chemical, rheological and sensory properties of balady bread, flat bread, and pie while improved their nutritive values.

Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Performance Comparison between Conventional and Flexible Box Erecting Machines Using Dispatching Rules

In this paper, we introduce a flexible box erecting machine (BEM) that swiftly and automatically transforms cardboard into a three dimensional box. Recently, the parcel service and home-shopping industries have grown rapidly, and there is an increasing need for various box types to ship various products. However, workers cannot fold thousands of boxes manually in a day. As such, automatic BEMs are garnering greater attention. This study takes equipment operation into consideration as well as mechanical improvements in order to design a BEM that is able to outperform its conventional counterparts. We analyzed six dispatching rules – First In First Out (FIFO), Shortest Processing Time (SPT), Earliest Due Date (EDD), Setup Avoidance, EDD + SPT, and EDD + Setup Avoidance – to determine which one was most suitable for BEM operation. Consequently, SPT and Setup Avoidance were found to be the most critical rules, followed by EDD + Setup Avoidance, EDD + SPT, EDD, and FIFO. This hierarchy was valid for both our conventional BEM and our new flexible BEM from the viewpoint of processing time. We believe that this research can contribute to flexible BEM management, which has the potential to increase productivity and convenience.

Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites

This paper describes the development of new class of epoxy based rice husk filled jute reinforced composites. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylenetetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases.

Synthesis, Structural, and Dielectric Characterization of Cadmium Oxide Nanoparticles

Cadmium oxide (CdO) nanoparticles have been prepared by chemical coprecipitation method. The synthesized nanoparticles were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV analysis, and dielectric studies. The crystalline nature and particle size of the CdO nanoparticles were characterized by Powder X-ray diffraction analysis (XRD). The morphology of prepared CdO nanoparticles was studied by scanning electron microscopy. The particle size was studied using the transmission electron microscopy (TEM).The optical properties were obtained from UV-Vis absorption spectrum. The dielectric properties of CdO nanoparticles were studied in the frequency range of 50 Hz–5 MHz at different temperatures. The frequency dependence of the dielectric constant and dielectric loss is found to decrease with an increase in the frequency at different temperatures. The ac conductivity of CdO nanoparticle has been studied.

Matrix Converter Fed Brushless DC Motor Using Field Programmable Gate Array

Brushless DC motors (BLDC) are widely used in industrial areas. The BLDC motors are driven either by indirect ACAC converters or by direct AC-AC converters. Direct AC-AC converters i.e. matrix converters are used in this paper to drive the three phase BLDC motor and it eliminates the bulky DC link energy storage element. A matrix converter converts the AC power supply to an AC voltage of variable amplitude and variable frequency. A control technique is designed to generate the switching pulses for the three phase matrix converter. For the control of speed of the BLDC motor a separate PI controller and Fuzzy Logic Controller (FLC) are designed and a hysteresis current controller is also designed for the control of motor torque. The control schemes are designed and tested separately. The simulation results of both the schemes are compared and contrasted in this paper. The results show that the fuzzy logic control scheme outperforms the PI control scheme in terms of dynamic performance of the BLDC motor. Simulation results are validated with the experimental results.

Capital Accumulation and Unemployment in Namibia, Nigeria, and South Africa

The research investigates the causes of unemployment in Namibia, Nigeria and South Africa and the role of Capital Accumulation in reducing the unemployment profile of these economies as proposed by the post-Keynesian economics. This is conducted through extensive review of literature on the NAIRU models and focused on the post-Keynesian view of unemployment within the NAIRU framework. The NAIRU (non-accelerating inflation rate of unemployment) model has become a dominant framework used in macroeconomic analysis of unemployment. The study views the post-Keynesian economics arguments that capital accumulation is a major determinant of unemployment. Unemployment remains the fundamental socio-economic challenge facing African economies. It has been a burden to citizens of those economies. Namibia, Nigeria, and South Africa are great African nations battling with high unemployment rates. The high unemployment rate in the country led the citizens to chase away foreigners in the country claiming that they have taken away their jobs. The study proposes there is a strong relationship between capital accumulation and unemployment in Namibia, Nigeria, and South Africa, and capital accumulation is responsible for high unemployment rates in these countries. For the economies to achieve steady state level of employment and satisfactory level of economic growth and development, there is need for capital accumulation to take place. The countries in the study have been selected after a critical research and investigations. They are selected based on the following criteria; African economies with high unemployment rates above 15% and have about 40% of their workforce unemployed. This level of unemployment is the critical level of unemployment in Africa as expressed by International Labour Organization (ILO). And finally, the African countries experience a slow growth in their Gross fixed capital formation. Adequate statistical measures have been employed using a time-series analysis in the study and the results revealed that capital accumulation is the main driver of unemployment performance in the chosen African countries. An increase in the accumulation of capital causes unemployment to reduce significantly. The results of the research work will be useful and relevant to federal governments and ministries, departments and agencies (MDAs) of Namibia, Nigeria and South Africa to resolve the issue of high and persistent unemployment rates in their economies which are great burden that slows growth and development of developing economies. Also, the result can be useful to World Bank, African Development Bank and International Labour Organization (ILO) in their further research and studies on how to tackle unemployment in developing and emerging economies.

Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Evaluation of Methodologies for Measuring Harmonics and Inter-Harmonics in Photovoltaic Facilities

The increase in electric power demand in face of environmental issues has intensified the participation of renewable energy sources such as photovoltaics, in the energy matrix of various countries. Due to their operational characteristics, they can generate time-varying harmonic and inter-harmonic distortions. For this reason, the application of methods of measurement based on traditional Fourier analysis, as proposed by IEC 61000-4-7, can provide inaccurate results. Considering the aspects mentioned herein, came the idea of the development of this work which aims to present the results of a comparative evaluation between a methodology arising from the combination of the Prony method with the Kalman filter and another method based on the IEC 61000-4-30 and IEC 61000-4-7 standards. Employed in this study were synthetic signals and data acquired through measurements in a 50kWp photovoltaic installation.

Diversification of Sweet Potato Blends and Utilization for Malnutrition and Poverty Alleviation

Value addition to agricultural produce is of possible potential in reducing poverty, improving food security and malnutrition, therefore the need to develop small and microenterprises of sweet potato production. A study was carried out in Nigeria to determine the acceptability of blends sweet potato (Ipomea batatas) and commodities yellow maize (Zea mays), millet (Pennisetum glaucum), soybean (Glycine max), bambara groundnut (Vigna subterranean), guinea corn (Sorghum vulgare), wheat (Triticum aestivum), and roselle (Hibiscus sabdariffa) through sensory evaluation. Sweet potato (Ipomea batatas) roots were processed using two methods: oven and sun drying. The blends were also assessed in terms of functional, chemical and color properties. Most acceptable blends include BAW (80:20 of sweet potato/wheat), BBC (80:20 of sweet potato/guinea corn), AAB (60:40 of sweet potato/guinea corn), YTE (100% soybean), TYG (100% sweet potato), KTN (100% wheat flour), XGP (80:20 of sweet potato/soybean), XAX (60:40 of sweet potato/wheat), LSS (100% Roselle), CHK (100% Guinea corn), and ABC (60:40% of sweet potato/ yellow maize). In addition, carried out chemical analysis revealed that sweet potato has high percentage of vitamins A and C, potassium (K), manganese (Mn), calcium (Ca), magnesium (Mg) and iron (Fe) and fibre content. There is also an increase of vitamin A and Iron in the blended products.

Design of Roller Compacting Concrete Pavement

The quality of concrete is usually defined by compressive strength, but flexural strength is the most important characteristic of concrete in a pavement which control the mix design of concrete instead of compressive strength. Therefore, the aggregates which are selected for the pavements are affected by higher flexural strength. Roller Compacting Concrete Pavement (RCCP) is not a new construction method. The other characteristic of this method is no bleeding and less shrinkage due to the lower amount of water. For this purpose, a roller is needed for placing and compacting. The surface of RCCP is not smooth; therefore, the most common use of this pavement is in an industrial zone with slower traffic speed which requires durable and tough pavement. For preparing a smoother surface, it can be achieved by asphalt paver. RCCP decrease the finishing cost because there are no bars, formwork, and the lesser labor need for placing the concrete. In this paper, different aspect of RCCP such as mix design, flexural, compressive strength and focus on the different part of RCCP on detail have been investigated.

Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction

Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group.

Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine

Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids can be potential alternate solvents for carbon dioxide capture from gaseous streams. This is due to its ability to resist oxidative degradation, low volatility and its ionic structure. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermo physical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.

Dengue Death Review: A Tool to Adjudge the Cause of Dengue Mortality and Use of the Tool for Prevention of Dengue Deaths

Dengue is a mosquito-borne viral disease endemic in many countries in the tropics and sub-tropics. The state of Punjab in India shows cyclical and seasonal variation in dengue cases. The Case Fatality Rate of Dengue has ranged from 0.6 to 1.0 in the past years. The department has initiated review of the cases that have died due to dengue in order to know the exact cause of the death in a case of dengue. The study has been undertaken to know the other associated co-morbidities and factors causing death in a case of dengue. The study used the predesigned proforma on which the records (medical and Lab) were recorded and reviewed by the expert committee of the doctors. This study has revealed that cases of dengue having co-morbidities have longer stay in hospital. Fluid overload and co-morbidities have been found as major factors leading to death, however, in a confirmed case of dengue hepatorenal shutdown was found to be major cause of mortality. The data obtained will help in sensitizing the treating physicians in order to decrease the mortality due to dengue in future.

Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity

This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mold cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process is analyzed by including the effect of pouring velocity as well as natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.

Collaborative Environmental Management: A Case Study Research of Stakeholders’ Collaboration in the Nigerian Oil-producing Region

A myriad of environmental issues face the Nigerian industrial region, resulting from; oil and gas production, mining, manufacturing and domestic wastes. Amidst these, much effort has been directed by stakeholders in the Nigerian oil producing regions, because of the impacts of the region on the wider Nigerian economy. Although collaborative environmental management has been noted as an effective approach in managing environmental issues, little attention has been given to the roles and practices of stakeholders in effecting a collaborative environmental management framework for the Nigerian oil-producing region. This paper produces a framework to expand and deepen knowledge relating to stakeholders aspects of collaborative roles in managing environmental issues in the Nigeria oil-producing region. The knowledge is derived from analysis of stakeholders’ practices – studied through multiple case studies using document analysis. Selected documents of key stakeholders – Nigerian government agencies, multi-national oil companies and host communities, were analyzed. Open and selective coding was employed manually during document analysis of data collected from the offices and websites of the stakeholders. The findings showed that the stakeholders have a range of roles, practices, interests, drivers and barriers regarding their collaborative roles in managing environmental issues. While they have interests for efficient resource use, compliance to standards, sharing of responsibilities, generating of new solutions, and shared objectives; there is evidence of major barriers and these include resource allocation, disjointed policy, ineffective monitoring, diverse socio- economic interests, lack of stakeholders’ commitment and limited knowledge sharing. However, host communities hold deep concerns over the collaborative roles of stakeholders for economic interests, particularly, where government agencies and multi-national oil companies are involved. With these barriers and concerns, a genuine stakeholders’ collaboration is found to be limited, and as a result, optimal environmental management practices and policies have not been successfully implemented in the Nigeria oil-producing region. A framework is produced that describes practices that characterize collaborative environmental management might be employed to satisfy the stakeholders’ interests. The framework recommends critical factors, based on the findings, which may guide a collaborative environmental management in the oil producing regions. The recommendations are designed to re-define the practices of stakeholders in managing environmental issues in the oil producing regions, not as something wholly new, but as an approach essential for implementing a sustainable environmental policy. This research outcome may clarify areas for future research as well as to contribute to industry guidance in the area of collaborative environmental management.

Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue

In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics.