The Willingness of Business Students on T Innovative Behavior within the Theory of Planned Behavior

Classes on creativity, innovation, and entrepreneurship are becoming quite popular at universities throughout the world. However, it is not easy for business students to get involved to innovative activities, especially patent application. The present study investigated how to enhance business students- intention to participate in innovative activities and which incentives universities should consider. A 22-item research scale was used, and confirmatory factor analysis was conducted to verify its reliability and validity. Multiple regression and discriminant analyses were also conducted. The results demonstrate the effect of growth-need strength on innovative behavior and indicate that the theory of planned behavior can explain and predict business students- intention to participate in innovative activities. Additionally, the results suggest that applying our proposed model in practice would effectively strengthen business students- intentions to engage in innovative activities.

Integrating Big Island Layout with Pull System for Production Optimization

Lean manufacturing is a production philosophy made popular by Toyota Motor Corporation (TMC). It is globally known as the Toyota Production System (TPS) and has the ultimate aim of reducing cost by thoroughly eliminating wastes or muda. TPS embraces the Just-in-time (JIT) manufacturing; achieving cost reduction through lead time reduction. JIT manufacturing can be achieved by implementing Pull system in the production. Furthermore, TPS aims to improve productivity and creating continuous flow in the production by arranging the machines and processes in cellular configurations. This is called as Cellular Manufacturing Systems (CMS). This paper studies on integrating the CMS with the Pull system to establish a Big Island-Pull system production for High Mix Low Volume (HMLV) products in an automotive component industry. The paper will use the build-in JIT system steps adapted from TMC to create the Pull system production and also create a shojinka line which, according to takt time, has the flexibility to adapt to demand changes simply by adding and taking out manpower. This will lead to optimization in production.

Multi-Agent Simulation of Wayfinding for Rescue Operation during Building Fire

Recently research on human wayfinding has focused mainly on mental representations rather than processes of wayfinding. The objective of this paper is to demonstrate the rationality behind applying multi-agent simulation paradigm to the modeling of rescuer team wayfinding in order to develop computational theory of perceptual wayfinding in crisis situations using image schemata and affordances, which explains how people find a specific destination in an unfamiliar building such as a hospital. The hypothesis of this paper is that successful navigation is possible if the agents are able to make the correct decision through well-defined cues in critical cases, so the design of the building signage is evaluated through the multi-agent-based simulation. In addition, a special case of wayfinding in a building, finding one-s way through three hospitals, is used to demonstrate the model. Thereby, total rescue time for rescue operation during building fire is computed. This paper discuses the computed rescue time for various signage localization and provides experimental result for optimization of building signage design. Therefore the most appropriate signage design resulted in the shortest total rescue time in various situations.

A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)

In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.

Protein Secondary Structure Prediction

Protein structure determination and prediction has been a focal research subject in the field of bioinformatics due to the importance of protein structure in understanding the biological and chemical activities of organisms. The experimental methods used by biotechnologists to determine the structures of proteins demand sophisticated equipment and time. A host of computational methods are developed to predict the location of secondary structure elements in proteins for complementing or creating insights into experimental results. However, prediction accuracies of these methods rarely exceed 70%.

Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

How Valid Are Our Language Test Interpretations? A Demonstrative Example

Validity is an overriding consideration in language testing. If a test score is intended for a particular purpose, this must be supported through empirical evidence. This article addresses the validity of a multiple-choice achievement test (MCT). The test is administered at the end of each semester to decide about students' mastery of a course in general English. To provide empirical evidence pertaining to the validity of this test, two criterion measures were used. In so doing, a Cloze test and a C-test which are reported to gauge general English proficiency were utilized. The results of analyses show that there is a statistically significant correlation among participants' scores on the MCT, Cloze, and Ctest. Drawing on the findings of the study, it can be cautiously deduced that these tests measure the same underlying trait. However, allowing for the limitations of using criterion measures to validate tests, we cannot make any absolute claim as to the validity of this MCT test.

Solver for a Magnetic Equivalent Circuit and Modeling the Inrush Current of a 3-Phase Transformer

Knowledge about the magnetic quantities in a magnetic circuit is always of great interest. On the one hand, this information is needed for the simulation of a transformer. On the other hand, parameter studies are more reliable, if the magnetic quantities are derived from a well established model. One possibility to model the 3-phase transformer is by using a magnetic equivalent circuit (MEC). Though this is a well known system, it is often not an easy task to set up such a model for a large number of lumped elements which additionally includes the nonlinear characteristic of the magnetic material. Here we show the setup of a solver for a MEC and the results of the calculation in comparison to measurements taken. The equations of the MEC are based on a rearranged system of the nodal analysis. Thus it is possible to achieve a minimum number of equations, and a clear and simple structure. Hence, it is uncomplicated in its handling and it supports the iteration process. Additional helpful tasks are implemented within the solver to enhance the performance. The electric circuit is described by an electric equivalent circuit (EEC). Our results for the 3-phase transformer demonstrate the computational efficiency of the solver, and show the benefit of the application of a MEC.

Value Stream Oriented Inventory Management

Producing companies aspire to high delivery availability despite appearing disruptions. To ensure high delivery availability safety stocksare required. Howeversafety stock leads to additional capital commitment and compensates disruptions instead of solving the reasons.The intention is to increase the stability in production by configuring the production planning and control systematically. Thus the safety stock can be reduced. The largest proportion of inventory in producing companies is caused by batch inventory, schedule deviations and variability of demand rates.These reasons for high inventory levels can be reduced by configuring the production planning and control specifically. Hence the inventory level can be reduced. This is enabled by synchronizing the lot size straightening the demand as well as optimizing the releasing order, sequencing and capacity control.

Performance Evaluation of the Post-Installed Anchor for Sign Structure

Numerous experimental tests for post-installed anchor systems drilled in hardened concrete were conducted in order to estimate pull-out and shear strength accounting for uncertainties such as torque ratios, embedment depths and different diameters in demands. In this study, the strength of the systems was significantly changed by the effect of those three uncertainties during pull-out experimental tests, whereas the shear strength of the systems was not affected by torque ratios. It was also shown that concrete cone failure or damage mechanism was generally investigated during and after pull-out tests and in shear strength tests, mostly the anchor systems were failed prior to failure of primary structural system. Furthermore, 3D finite element model for the anchor systems was created by ABAQUS for the numerical analysis. The verification of finite element model was identical till the failure points to the load-displacement relationship specified by the experimental tests.

Methods for Manufacture of Corrugated Wire Mesh Laminates

Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.

Preservation of Millet Flour by Refrigeration: Changes in Total Protein and Amino Acids Composition During Storage

This work describes refrigeration effects during storage on total protein and amino acids composition of raw and processed flour of two pearl millet cultivars (Ashana and Dembi). The protein content of the whole raw flour was found to be 14.46 and 13.38% for Ashana and Dembi cultivars, respectively. Dehulling of the grains reduced the protein content to 13.38 and 12.67% for the cultivars, respectively. For both cultivars, the protein content of the whole and dehulled raw flour before and after cooking was slightly decreased when the flour was stored for 60 days even after refrigeration. The effect of refrigeration process in combination with the storage period, cooking or dehulling was found to be vary between amino acids and even between cultivars. Regardless of the storage period and processing method, the amino acids content was remained unchanged after refrigeration for both cultivars.

Course Adoption of MS Technologies – Case Study

Motivated by Microsoft Co. Academic Program initiative, the department of Information Technology in King Saud University has adopted Microsoft products in three courses. The initiative aimed at enhancing the abilities of the university graduates and equipping them with skills that would help them in the job market. A number of methods of collecting assessment data were used to evaluate the course adoption initiative. Assessment data indicated that the goal of the course adoption is being achieved and that the students were much better prepared to design applications and administrate networks.

Takagi-Sugeno Fuzzy Control of Induction Motor

This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.

Optimization of SAD Algorithm on VLIW DSP

SAD (Sum of Absolute Difference) algorithm is heavily used in motion estimation which is computationally highly demanding process in motion picture encoding. To enhance the performance of motion picture encoding on a VLIW processor, an efficient implementation of SAD algorithm on the VLIW processor is essential. SAD algorithm is programmed as a nested loop with a conditional branch. In VLIW processors, loop is usually optimized by software pipelining, but researches on optimal scheduling of software pipelining for nested loops, especially nested loops with conditional branches are rare. In this paper, we propose an optimal scheduling and implementation of SAD algorithm with conditional branch on a VLIW DSP processor. The proposed optimal scheduling first transforms the nested loop with conditional branch into a single loop with conditional branch with consideration of full utilization of ILP capability of the VLIW processor and realization of earlier escape from the loop. Next, the proposed optimal scheduling applies a modulo scheduling technique developed for single loop. Based on this optimal scheduling strategy, optimal implementation of SAD algorithm on TMS320C67x, a VLIW DSP is presented. Through experiments on TMS320C6713 DSK, it is shown that H.263 encoder with the proposed SAD implementation performs better than other H.263 encoder with other SAD implementations, and that the code size of the optimal SAD implementation is small enough to be appropriate for embedded environments.

Effects of Dry Period Length on, Milk Production and Composition, Blood Metabolites and Complete Blood Count in Subsequent Lactation of Holstein Dairy Cows

Twenty - nine Holstein cows were used to evaluate the effects of different dry period (DP) lengths on milk yield and composition, some blood metabolites, and complete blood count (CBC). Cows were assigned to one of 2 treatments: 1) 60-d dry period, 2) 35-d DP. Milk yield, from calving to 60 days, was not different for cows on the treatments (p =0.130). Cows in the 35-d DP produced more milk protein and SNF compare with cows in treatment 1 (p ≤ 0.05). Serum glucose, non-esterified fatty acids (NEFA), beta hydroxyl butyrate acid (BHBA), blood urea nitrogen (BUN), urea, and glutamic oxaloacetic transaminase (GOT) were all similar among the treatments. Body condition score (BCS), body weight (BW), complete blood count (CBC) and health problems were similar between the treatments. The results of this study demonstrated we can reduce the dry period length to 35 days with no problems.

Project Management in Student Satellite Projects: A University – Industry Collaboration View

This research contribution propels the idea of collaborating environment for the execution of student satellite projects in the backdrop of project management principles. The recent past has witnessed a technological shift in the aerospace industry from the big satellite projects to the small spacecrafts especially for the earth observation and communication purposes. This vibrant shift has vitalized the academia and industry to share their resources and to create a win-win paradigm of mutual success and technological development along with the human resource development in the field of aerospace. Small student satellites are the latest jargon of academia and more than 100 CUBESAT projects have been executed successfully all over the globe and many new student satellite projects are in the development phase. The small satellite project management requires the application of specific knowledge, skills, tools and techniques to achieve the defined mission requirements. The Authors have presented the detailed outline for the project management of student satellites and presented the role of industry to collaborate with the academia to get the optimized results in academic environment.

High Performance Liquid Chromatographic Method for Determination of Colistin Sulfate and its Application in Medicated Premixand Animal Feed

The aim of the present study was to develop and validate an inexpensive and simple high performance liquid chromatographic (HPLC) method for the determination of colistin sulfate. Separation of colistin sulfate was achieved on a ZORBAX Eclipse XDB-C18 column using UV detection at λ=215 nm. The mobile phase was 30 mM sulfate buffer (pH 2.5):acetonitrile(76:24). An excellent linearity (r2=0.998) was found in the concentration range of 25 - 400 μg/mL. Intra- day and inter-day precisions of method (%RSD, n=3) were less than 7.9%.The developed and validated method was applied to determination of the content of colistin sulfate in medicated premix and animal feed sample.The recovery of colistin from animal feed was satisfactorily ranged from 90.92 to 93.77%. The results demonstrated that the HPLC method developed in this work is appropriate for direct determination of colistin sulfate in commercial medicated premixes and animal feed.

Advanced Stochastic Models for Partially Developed Speckle

Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

Design of Smith-like Predictive Controller with Communication Delay Adaptation

This paper addresses the design of predictive networked controller with adaptation of a communication delay. The networked control system contains random delays from sensor to controller and from controller to actuator. The proposed predictive controller includes an adaptation loop which decreases the influence of communication delay on the control performance. Also, the predictive controller contains a filter which improves the robustness of the control system. The performance of the proposed adaptive predictive controller is demonstrated by simulation results in comparison with PI controller and predictive controller with constant delay.