IFDewey: A New Insert-Friendly Labeling Schemafor XML Data

XML has become a popular standard for information exchange via web. Each XML document can be presented as a rooted, ordered, labeled tree. The Node label shows the exact position of a node in the original document. Region and Dewey encoding are two famous methods of labeling trees. In this paper, we propose a new insert friendly labeling method named IFDewey based on recently proposed scheme, called Extended Dewey. In Extended Dewey many labels must be modified when a new node is inserted into the XML tree. Our method eliminates this problem by reserving even numbers for future insertion. Numbers generated by Extended Dewey may be even or odd. IFDewey modifies Extended Dewey so that only odd numbers are generated and even numbers can then be used for a much easier insertion of nodes.

Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy

Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.

Groundwater Unit Hydrograph Evaluation of Niriz Plain

Groundwater is one of the most important water resources in Fars province. Based on this study, 95 percent of the total annual water consumption in Fars is used for agriculture, whereas the percentages for domestic and industrial uses are 4 and 1 percent, respectively. Population growth, urban and industrial growth, and agricultural development in Fars have created a condition of water stress. In this province, farmers and other users are pumping groundwater faster than its natural replenishment rate, causing a continuous drop in groundwater tables and depletion of this resource. In this research variation of groundwater level, their effects and ways to help control groundwater levels in aquifer of the Niriz plains in Fars plain were evaluated .Excessive exploitation of groundwater in this aquifer caused the groundwater levels fall too fast or to unacceptable levels. The average drawdown of the groundwater level in this plain were 9.1 meters during 1997 to 2004. The purpose of this study is to evaluate water level changes in the Niriz Aquifer in the Fars province in order to determine the areas of greatest depletion, the cause of depletion, and predict the remaining life of the aquifer.

A New Model for Economic Optimization of Water Diversion System during Dam Construction using PSO Algorithm

The usual method of river flow diversion involves construction of tunnels and cofferdams. Given the fact that the cost of diversion works could be as high as 10-20% of the total dam construction cost, due attention should be paid to optimum design of the diversion works. The cost of diversion works depends, on factors, such as: the tunnel dimensions and the intended tunneling support measures during and after excavation; quality and characterizes of the rock through which the tunnel should be excavated; the dimensions of the upstream (and downstream) cofferdams; and the magnitude of river flood the system is designed to divert. In this paper by use of the cost of unit prices for tunnel excavation, tunnel lining, tunnel support (rock bolt + shotcrete) and cofferdam fill the cost function was determined. The function is then minimized by the aid of PSO Algorithm (particle swarm optimization). It is found that the optimum diameter and the total diversion cost are directly related to the river flood discharge (Q). It has also shown that in addition to optimum diameter design discharge (Q), river length, tunnel length, is mainly a function of the ratios (not the absolute values) of the unit prices and does not depend on the overall price levels in the respective country. The results of optimization use in some of the case study lead us to significant changes in the cost.

Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree

In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.

Nonlinear Control of a Continuous Bioreactor Based on Cell Population Model

Saccharomyces cerevisiae (baker-s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance models can be used to capture the dynamic behavior of such cultures. In this paper an unstructured, segregated model is used which is based on population balance equation(PBE) and then in order to simulation, the 4th order Rung-Kutta is used for time dimension and three methods, finite difference, orthogonal collocation on finite elements and Galerkin finite element are used for discretization of the cell mass domain. The results indicate that the orthogonal collocation on finite element not only is able to predict the oscillating behavior of the cell culture but also needs much little time for calculations. Therefore this method is preferred in comparison with other methods. In the next step two controllers, a globally linearizing control (GLC) and a conventional proportional-integral (PI) controller are designed for controlling the total cell mass per unit volume, and performances of these controllers are compared through simulation. The results show that although the PI controller has simpler structure, the GLC has better performance.

Investigation of Oil inside the Wells in REY Area in Tehran Oil Refining Company in Iran

REY area has been located in Tehran Province and several archaeological ruins of this area indicate that the settlement in this area has been started since several thousand years ago. In this paper, the main investigation items consist of analysis of oil components and groundwater quality inside the wells. By finding the contents of oil in the well, it is possible to find out the pollution source by comparing the oil contents of well with other oil products that are used inside and outside of the oil farm. Investigation items consist of analysis of BTEX (Benzene, Toluene, Ethyl-benzene, Xylene), Gas chromatographic distillation characteristics, Water content, Density, Sulfur content, Lead content, Atmospheric distillation, MTBE(Methyl tertiary butyl ether). Analysis of polluting oil components showed that except MW(Monitoring Well)10 and MW 15 that oil with slightly heavy components was detected in them; with a high possibility the polluting oil is light oil.

Development of Cooling Demand by Computerize

Air conditioning is mainly use as human comfort cooling medium. It use more in high temperatures are country such as Malaysia. Proper estimation of cooling load will archive ideal temperature. Without proper estimation can lead to over estimation or under estimation. The ideal temperature should be comfort enough. This study is to develop a program to calculate an ideal cooling load demand, which is match with heat gain. Through this study, it is easy to calculate cooling load estimation. Objective of this study are to develop user-friendly and easy excess cooling load program. This is to insure the cooling load can be estimate by any of the individual rather than them using rule-of-thumb. Developed software is carryout by using Matlab-GUI. These developments are only valid for common building in Malaysia only. An office building was select as case study to verify the applicable and accuracy of develop software. In conclusion, the main objective has successfully where developed software is user friendly and easily to estimate cooling load demand.

Stabilization of the Lorenz Chaotic Equations by Fuzzy Controller

In this paper, a fuzzy controller is designed for stabilization of the Lorenz chaotic equations. A simple Mamdani inference method is used for this purpose. This method is very simple and applicable for complex chaotic systems and it can be implemented easily. The stability of close loop system is investigated by the Lyapunov stabilization criterion. A Lyapunov function is introduced and the global stability is proven. Finally, the effectiveness of this method is illustrated by simulation results and it is shown that the performance of the system is improved.

Assessment of Water Pollution of Kowsar Dam Reservoir

The reservoir of Kowsar dam supply water for different usages such as aquaculture farms , drinking, agricultural and industrial usages for some provinces in south of Iran. The Kowsar dam is located next to the city of Dehdashat in Kohgiluye and Boyerahmad province in southern Iran. There are some towns and villages on the Kowsar dam watersheds, which Dehdasht and Choram are the most important and populated twons in this area, which can to be sources of pollution for water reservoir of the Kowsar dam . This study was done to determine of water pollution of the Kowsar dam reservoir which is one of the most important water resources of Kohkiloye and Boyerahmad and Bushehr provinces in south-west Iran. In this study , water samples during 12 months were collected to examine Biochemical Oxygen Demand (BOD) and Dissolved Oxygen(DO) as a criterion for evaluation of water pollution of the reservoir. In summary ,the study has shown Maximum, average and minimum levels of BOD have observed 25.9 ,9.15 and 2.3 mg/L respectively and statistical parameters of data such as standard deviation , variance and skewness have calculated 7.88, 62 and 1.54 respectively. Finally the results were compared with Iranian national standards. Among the analyzed samples, as the maximum value of BOD (25.9 mg/L) was observed at the May 2010 , was within the maximum admissible limits by the Iranian standards.

The Necessity of Biomass Application for Developing Combined Heat and Power(CHP) with Biogas Fuel: Case Study

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

Encoding and Compressing Data for Decreasing Number of Switches in Baseline Networks

This method decrease usage power (expenditure) in networks on chips (NOC). This method data coding for data transferring in order to reduces expenditure. This method uses data compression reduces the size. Expenditure calculation in NOC occurs inside of NOC based on grown models and transitive activities in entry ports. The goal of simulating is to weigh expenditure for encoding, decoding and compressing in Baseline networks and reduction of switches in this type of networks. KeywordsNetworks on chip, Compression, Encoding, Baseline networks, Banyan networks.

MICOSim: A Simulator for Modelling Economic Scheduling in Grid Computing

This paper is concerned with the design and implementation of MICOSim, an event-driven simulator written in Java for evaluating the performance of Grid entities (users, brokers and resources) under different scenarios such as varying the numbers of users, resources and brokers and varying their specifications and employed strategies.

RUPSec: An Extension on RUP for Developing Secure Systems - Requirements Discipline

The world is moving rapidly toward the deployment of information and communication systems. Nowadays, computing systems with their fast growth are found everywhere and one of the main challenges for these systems is increasing attacks and security threats against them. Thus, capturing, analyzing and verifying security requirements becomes a very important activity in development process of computing systems, specially in developing systems such as banking, military and e-business systems. For developing every system, a process model which includes a process, methods and tools is chosen. The Rational Unified Process (RUP) is one of the most popular and complete process models which is used by developers in recent years. This process model should be extended to be used in developing secure software systems. In this paper, the Requirement Discipline of RUP is extended to improve RUP for developing secure software systems. These proposed extensions are adding and integrating a number of Activities, Roles, and Artifacts to RUP in order to capture, document and model threats and security requirements of system. These extensions introduce a group of clear and stepwise activities to developers. By following these activities, developers assure that security requirements are captured and modeled. These models are used in design, implementation and test activitie

Public User Assessment of Malaysia's E-Government Applications

The implementation of electronic government started since the initiation of Multimedia Super Corridor (MSC) by the Malaysia government. The introduction of ICT in the public sector especially e-Government initiatives opens up a new book in the government administration throughout the world. The aim or this paper is to discuss the implementation of e-government in Malaysia, covering the result of public user self assessment on Malaysia's electronic government applications. E-services, e-procurement, Generic Office Environment (GOE), Human Resources Management Information System (HRMIS), Project Monitoring System (PMS), Electronic Labor Exchange (ELX) and e-syariah(religion) were the seven flagship application assessed. The study adopted a crosssectional survey research approach and information system literature were used. The analysis was done for 35 responden in pilot test and there was evidence from public user's perspective to suggest that the e-government applications were generally successful.

Heat Transfer Modeling in Multi-Layer Cookware using Finite Element Method

The high temperature degree and uniform Temperature Distribution (TD) on surface of cookware which contact with food are effective factors for improving cookware application. Additionally, the ability of pan material in retaining the heat and nonreactivity with foods are other significant properties. It is difficult for single material to meet a wide variety of demands such as superior thermal and chemical properties. Multi-Layer Plate (MLP) makes more regular TD. In this study the main objectives are to find the best structure (single or multi-layer) and materials to provide maximum temperature degree and uniform TD up side surface of pan. And also heat retaining of used metals with goal of improving the thermal quality of pan to economize the energy. To achieve this aim were employed Finite Element Method (FEM) for analyzing transient thermal behavior of applied materials. The analysis has been extended for different metals, we achieved the best temperature profile and heat retaining in Copper/ Stainless Steel MLP.

Evaluation of drought Tolerance Indices in Dryland Bread wheat Genotypes under Post-Anthesis drought Stress

Post-anthesis drought stress is the most important problem affecting wheat production in dryland fields, specially in Mediterranean regions. The main objective of this research was to evaluate drought tolerance indices in dryland wheat genotypes under post-anthesis drought stress. The research was including two different experiments. In each experiment, twenty dryland bread wheat genotypes were sown in a randomized complete blocks design (RCBD) with three replications. One of experiments belonged to rain-fed conditions (post-anthesis drought stress) and other experiment was under non-stress conditions (with supplemental irrigation). Different drought tolerance indices include Stress Tolerance (Tol), Mean Productivity (MP), Geometric Mean Productivity (GMP), Stress Susceptibility Index (SSI), Stress Tolerance Index (STI), Harmonic Mean (HAM), Yield Index (YI) and Yield Stability Index (YSI) were evaluate based on grain yield under rain-fed (Ys) and supplemental irrigation (Yp) environments. G10 and G12 were the most tolerant genotypes based on TOL and SSI. But, based on MP, GMP, STI, HAM and YI indices, G1 and G2 were selected. STI, GMP and MP indices had high correlation with grain yield under rain-fed and supplementary irrigation conditions and were recognized as appropriate indices to identify genotypes with high grain yield and low sensitivity to drought stress environments.

Analytical Solution for Compressible Gas Flow Inside a Two-Dimensional Poiseuille Flow in Microchannels with Constant Heat Flux Including the Creeping Effect

To achieve reliable solutions, today-s numerical and experimental activities need developing more accurate methods and utilizing expensive facilities, respectfully in microchannels. The analytical study can be considered as an alternative approach to alleviate the preceding difficulties. Among the analytical solutions, those with high robustness and low complexities are certainly more attractive. The perturbation theory has been used by many researchers to analyze microflows. In present work, a compressible microflow with constant heat flux boundary condition is analyzed. The flow is assumed to be fully developed and steady. The Mach and Reynolds numbers are also assumed to be very small. For this case, the creeping phenomenon may have some effect on the velocity profile. To achieve robustness solution it is assumed that the flow is quasi-isothermal. In this study, the creeping term which appears in the slip boundary condition is formulated by different mathematical formulas. The difference between this work and the previous ones is that the creeping term is taken into account and presented in non-dimensionalized form. The results obtained from perturbation theory are presented based on four non-dimensionalized parameters including the Reynolds, Mach, Prandtl and Brinkman numbers. The axial velocity, normal velocity and pressure profiles are obtained. Solutions for velocities and pressure for two cases with different Br numbers are compared with each other and the results show that the effect of creeping phenomenon on the velocity profile becomes more important when Br number is less than O(ε).

To Be Smooth of The Interest and Output of Accepted Companies Stock at Negotiable Paper Exchange of Tehran

In this research relationship between to be smooth the interest and output of accepted companies stock at negotiable paper exchange of Tehran is studied. Static community capacity included 363 companies member of negotiable paper exchange of Tehran that 54 companies were, by considering research limitation, selected from 2004 to 2009. Needed data for model test in librarian method was chosen from RAH AVARDE NOVIN informative banks, TADBIR and collecting needed data was selected from Tehran negotiable paper exchange archive. Given results show that in spite of belief among people based on companies have more smooth interest have more output, but resulted outcomes of test-done reveals that there is no relation between smooth interest and stock output.

The Effect of Variable Incubation Temperatures on Hatchability and Survival of Goldlined Seabream, Rhabdosargus sarba (Forsskål,1775) Larvae

The effect of varying holding temperature on hatching success, occurrence of deformities and mortality rates were investigated for goldlined seabream eggs. Wild broodstock (600 g) were stocked at a 2:1 male-female ratio in a 2 m3 fiberglass tank supplied with filtered seawater (37 g L-1 salinity, temp. range 24±0.5 oC [day] and 22±1 oC [night], DO2 in excess of 5.0mg L-1). Females were injected with 200 IU kg-1 HCG between 08.00 and 10.00 h and returned to tanks to spawn following which eggs were collected by hand using a 100μm net. Fertilized eggs at the gastrulation stage (120 L-1) were randomly placed into one of 12 experimental 6 L aerated (DO2 5 mg L-1) plastic containers with water temperatures maintained at 24±0.5 oC (ambient), 26±0.5 oC, 28± 0.5 oC and 30±0.5 oC using thermostats. Each treatment was undertaken in triplicate using a 12:12 photophase:scotophase photoperiod. No differences were recorded between eggs reared at 24 and 26 oC with respect to viability, deformity, mortality or unhatched egg rates. Increasing temperature reduced the number of viable eggs with those at 30 oC returning poorest performance (P < 0.05). Mortality levels were lowest for eggs incubated at 24 and 26 oC. The greatest level of deformities recorded was that for eggs reared at 28 oC.