Schmitt Trigger Based SRAM Using Finfet Technology- Shorted Gate Mode

The most widely used semiconductor memory types are the Dynamic Random Access Memory (DRAM) and Static Random Access memory (SRAM). Competition among memory manufacturers drives the need to decrease power consumption and reduce the probability of read failure. A technology that is relatively new and has not been explored is the FinFET technology. In this paper, a single cell Schmitt Trigger Based Static RAM using FinFET technology is proposed and analyzed. The accuracy of the result is validated by means of HSPICE simulations with 32nm FinFET technology and the results are then compared with 6T SRAM using the same technology.

Personalization and the Universal Communications Identifier Concept

As communications systems and technology become more advanced and complex, it will be increasingly important to focus on users- individual needs. Personalization and effective user profile management will be necessary to ensure the uptake and success of new services and devices and it is therefore important to focus on the users- requirements in this area and define solutions that meet these requirements. The work on personalization and user profiles emerged from earlier ETSI work on a Universal Communications Identifier (UCI) which is a unique identifier of the user rather than a range of identifiers of the many of communication devices or services (e.g. numbers of fixed phone at home/work, mobile phones, fax and email addresses). This paper describes work on personalization including standardized information and preferences and an architectural framework providing a description of how personalization can be integrated in Next Generation Networks, together with the UCI concept.

Learning Theories within Coaching Process

These days we face with so many advertisements in magazines, those mentioned coaching is pragmatic specialties which help people make change in their lives. Up to know Specialty coaches are not necessarily therapists, consultants or psychologist, thus they may not know psychological theories. The International Coach Federation identifies "facilitating learning and results" as one of its four core coach competencies, without understanding learning theories coaching practice hangs in theoretical abyss. Thus the aim of this article is investigating learning theories within coaching process. Therefore, I reviewed some cognitive and behavioral learning theories and analyzed their contribution with coaching process which has been introduced in mentor coaches and ICF certified coaches' papers and books. The result demonstrated that coaching profession is strongly grounded in learning theories, and it will be strengthened by the validation of theories and evidence-based research as we move forward. Thus, it needs more research in order to applying effective theoretical frameworks.

Chase Trainer Exercise Program in Athlete with Unilateral Patellofemoral Pain Syndrome (PFPS)

We investigated the effects of modified preprogrammed training mode Chase Trainer from Balance Trainer (BT3, HurLab, Tampere, Finland) on athlete who experienced unilateral Patellofemoral Pain Syndrome (PFPS). Twenty-seven athletes with mean age= 14.23 ±1.31 years, height = 164.89 ± 7.85 cm, weight = 56.94 ± 9.28 kg were randomly assigned to two groups: experiment (EG; n = 14) and injured (IG; n = 13). EG performed a series of Chase Trainer program which required them to shift their body weight at different directions, speeds and angle of leaning twice a week for duration of 8 weeks. The static postural control and perceived pain level measures were taken at baseline, after 6 weeks and 8 weeks of training. There was no significant difference in any of tested variables between EG and IG before and after 6-week the intervention period. However, after 8-week of training, the postural control (eyes open) and perceived pain level of EG improved compared to IG (p

The Elliptic Curves y2 = x3 - t2x over Fp

Let p be a prime number, Fp be a finite field and t ∈ F*p= Fp- {0}. In this paper we obtain some properties of ellipticcurves Ep,t: y2= y2= x3- t2x over Fp. In the first sectionwe give some notations and preliminaries from elliptic curves. In the second section we consider the rational points (x, y) on Ep,t. Wegive a formula for the number of rational points on Ep,t over Fnp for an integer n ≥ 1. We also give some formulas for the sum of x?andy?coordinates of the points (x, y) on Ep,t. In the third section weconsider the rank of Et: y2= x3- t2x and its 2-isogenous curve Et over Q. We proved that the rank of Etand Etis 2 over Q. In the last section we obtain some formulas for the sums Σt∈F?panp,t for an integer n ≥ 1, where ap,t denote the trace of Frobenius.

Determining Optimal Demand Rate and Production Decisions: A Geometric Programming Approach

In this paper a nonlinear model is presented to demonstrate the relation between production and marketing departments. By introducing some functions such as pricing cost and market share loss functions it will be tried to show some aspects of market modelling which has not been regarded before. The proposed model will be a constrained signomial geometric programming model. For model solving, after variables- modifications an iterative technique based on the concept of geometric mean will be introduced to solve the resulting non-standard posynomial model which can be applied to a wide variety of models in non-standard posynomial geometric programming form. At the end a numerical analysis will be presented to accredit the validity of the mentioned model.

High Resolution Methods Based On Rank Revealing Triangular Factorizations

In this paper, we propose a novel method for subspace estimation used high resolution method without eigendecomposition where the sample Cross-Spectral Matrix (CSM) is replaced by upper triangular matrix obtained from LU factorization. This novel method decreases the computational complexity. The method relies on a recently published result on Rank-Revealing LU (RRLU) factorization. Simulation results demonstrates that the new algorithm outperform the Householder rank-revealing QR (RRQR) factorization method and the MUSIC in the low Signal to Noise Ratio (SNR) scenarios.

Towards a Systematic, Cost-Effective Approach for ERP Selection

Existing experiences indicate that one of the most prominent reasons that some ERP implementations fail is related to selecting an improper ERP package. Among those important factors resulting in inappropriate ERP selections, one is to ignore preliminary activities that should be done before the evaluation of ERP packages. Another factor yielding these unsuitable selections is that usually organizations employ prolonged and costly selection processes in such extent that sometimes the process would never be finalized or sometimes the evaluation team might perform many key final activities in an incomplete or inaccurate way due to exhaustion, lack of interest or out-of-date data. In this paper, a systematic approach that recommends some activities to be done before and after the main selection phase is introduced for choosing an ERP package. On the other hand, the proposed approach has utilized some ideas that accelerates the selection process at the same time that reduces the probability of an erroneous final selection.

Highly Scalable, Reversible and Embedded Image Compression System

A new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuoustone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different levels of importance from which the bit stream will be generated. The subcomponents of each level of importance are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several enhance levels.

Method for Concept Labeling Based on Mapping between Ontology and Thesaurus

When designing information systems that deal with large amount of domain knowledge, system designers need to consider ambiguities of labeling termsin domain vocabulary for navigating users in the information space. The goal of this study is to develop a methodology for system designers to label navigation items, taking account of ambiguities stems from synonyms or polysemes of labeling terms. In this paper, we propose a method for concept labeling based on mappings between domain ontology andthesaurus, and report results of an empirical evaluation.

Assessing the Relation between Theory of Multiple Algebras and Universal Algebras

In this study, we examine multiple algebras and algebraic structures derived from them and by stating a theory on multiple algebras; we will show that the theory of multiple algebras is a natural extension of the theory of universal algebras. Also, we will treat equivalence relations on multiple algebras, for which the quotient constructed modulo them is a universal algebra and will study the basic relation and the fundamental algebra in question. In this study, by stating the characteristic theorem of multiple algebras, we show that the theory of multiple algebras is a natural extension of the theory of universal algebras.

Dextran Modified Silicon Photonic Microring Resonator Sensors

We present a dextran modified silicon microring resonator sensor for high density antibody immobilization. An array of sensors consisting of three sensor rings and a reference ring was fabricated and its surface sensitivity and the limit of detection were obtained using polyelectrolyte multilayers. The mass sensitivity and the limit of detection of the fabricated sensor ring are 0.35 nm/ng mm-2 and 42.8 pg/mm2 in air, respectively. Dextran modified sensor surface was successfully prepared by covalent grafting of oxidized dextran on 3-aminopropyltriethoxysilane (APTES) modified silicon sensor surface. The antibody immobilization on hydrogel dextran matrix improves 40% compared to traditional antibody immobilization method via APTES and glutaraldehyde linkage.

A High Quality Speech Coder at 600 bps

This paper presents a vocoder to obtain high quality synthetic speech at 600 bps. To reduce the bit rate, the algorithm is based on a sinusoidally excited linear prediction model which extracts few coding parameters, and three consecutive frames are grouped into a superframe and jointly vector quantization is used to obtain high coding efficiency. The inter-frame redundancy is exploited with distinct quantization schemes for different unvoiced/voiced frame combinations in the superframe. Experimental results show that the quality of the proposed coder is better than that of 2.4kbps LPC10e and achieves approximately the same as that of 2.4kbps MELP and with high robustness.

Effective Keyword and Similarity Thresholds for the Discovery of Themes from the User Web Access Patterns

Clustering techniques have been used by many intelligent software agents to group similar access patterns of the Web users into high level themes which express users intentions and interests. However, such techniques have been mostly focusing on one salient feature of the Web document visited by the user, namely the extracted keywords. The major aim of these techniques is to come up with an optimal threshold for the number of keywords needed to produce more focused themes. In this paper we focus on both keyword and similarity thresholds to generate themes with concentrated themes, and hence build a more sound model of the user behavior. The purpose of this paper is two fold: use distance based clustering methods to recognize overall themes from the Proxy log file, and suggest an efficient cut off levels for the keyword and similarity thresholds which tend to produce more optimal clusters with better focus and efficient size.

Accurate Crosstalk Analysis for RLC On-Chip VLSI Interconnect

This work proposes an accurate crosstalk noise estimation method in the presence of multiple RLC lines for the use in design automation tools. This method correctly models the loading effects of non switching aggressors and aggressor tree branches using resistive shielding effect and realistic exponential input waveforms. Noise peak and width expressions have been derived. The results obtained are at good agreement with SPICE results. Results show that average error for noise peak is 4.7% and for the width is 6.15% while allowing a very fast analysis.

A Comparison of Some Splines-Based Methods for the One-dimensional Heat Equation

In this paper, collocation based cubic B-spline and extended cubic uniform B-spline method are considered for solving one-dimensional heat equation with a nonlocal initial condition. Finite difference and θ-weighted scheme is used for time and space discretization respectively. The stability of the method is analyzed by the Von Neumann method. Accuracy of the methods is illustrated with an example. The numerical results are obtained and compared with the analytical solutions.

Flow around Two Cam Shaped Cylinders in Tandem Arrangement

In this paper flow around two cam shaped cylinders had been studied numerically. The equivalent diameter of cylinders is 27.6 mm. The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 2 varies in range of 50

MATLAB/SIMULINK Based Model of Single- Machine Infinite-Bus with TCSC for Stability Studies and Tuning Employing GA

With constraints on data availability and for study of power system stability it is adequate to model the synchronous generator with field circuit and one equivalent damper on q-axis known as the model 1.1. This paper presents a systematic procedure for modelling and simulation of a single-machine infinite-bus power system installed with a thyristor controlled series compensator (TCSC) where the synchronous generator is represented by model 1.1, so that impact of TCSC on power system stability can be more reasonably evaluated. The model of the example power system is developed using MATLAB/SIMULINK which can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, the parameters of the TCSC controller are optimized using genetic algorithm. The non-linear simulation results are presented to validate the effectiveness of the proposed approach.

Vibration Base Identification of Impact Force Using Genetic Algorithm

This paper presents the identification of the impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and the genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness vs. the measurement noise and sensor location.

eLearning Tools Evaluation based on Quality Concept Distance Computing. A Case Study

Despite the extensive use of eLearning systems, there is no consensus on a standard framework for evaluating this kind of quality system. Hence, there is only a minimum set of tools that can supervise this judgment and gives information about the course content value. This paper presents two kinds of quality set evaluation indicators for eLearning courses based on the computational process of three known metrics, the Euclidian, Hamming and Levenshtein distances. The “distance" calculus is applied to standard evaluation templates (i.e. the European Commission Programme procedures vs. the AFNOR Z 76-001 Standard), determining a reference point in the evaluation of the e-learning course quality vs. the optimal concept(s). The case study, based on the results of project(s) developed in the framework of the European Programme “Leonardo da Vinci", with Romanian contractors, try to put into evidence the benefits of such a method.