Abstract: This paper aims to select the optimal location and
setting parameters of TCSC (Thyristor Controlled Series
Compensator) controller using Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA) to mitigate small signal oscillations in a
multimachine power system. Though Power System Stabilizers
(PSSs) are prime choice in this issue, installation of FACTS device
has been suggested here in order to achieve appreciable damping of
system oscillations. However, performance of any FACTS devices
highly depends upon its parameters and suitable location in the
power network. In this paper PSO as well as GA based techniques are
used separately and compared their performances to investigate this
problem. The results of small signal stability analysis have been
represented employing eigenvalue as well as time domain response in
face of two common power system disturbances e.g., varying load
and transmission line outage. It has been revealed that the PSO based
TCSC controller is more effective than GA based controller even
during critical loading condition.
Abstract: With constraints on data availability and for study of power system stability it is adequate to model the synchronous generator with field circuit and one equivalent damper on q-axis known as the model 1.1. This paper presents a systematic procedure for modelling and simulation of a single-machine infinite-bus power system installed with a thyristor controlled series compensator (TCSC) where the synchronous generator is represented by model 1.1, so that impact of TCSC on power system stability can be more reasonably evaluated. The model of the example power system is developed using MATLAB/SIMULINK which can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, the parameters of the TCSC controller are optimized using genetic algorithm. The non-linear simulation results are presented to validate the effectiveness of the proposed approach.