Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method

This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.

Thermal Load Calculations of Multilayered Walls

Thermal load calculations have been performed for multi-layered walls that are composed of three different parts; a common (sand and cement) plaster, and two types of locally produced soft and hard bricks. The masonry construction of these layered walls was based on concrete-backed stone masonry made of limestone bricks joined by mortar. These multilayered walls are forming the outer walls of the building envelope of a typical Libyan house. Based on the periodic seasonal weather conditions, within the Libyan cost region during summer and winter, measured thermal conductivity values were used to implement such seasonal variation of heat flow and the temperature variations through the walls. The experimental measured thermal conductivity values were obtained using the Hot Disk technique. The estimation of the thermal resistance of the wall layers ( R-values) is based on measurements and calculations. The numerical calculations were done using a simplified analytical model that considers two different wall constructions which are characteristics of such houses. According to the obtained results, the R-values were quite low and therefore, several suggestions have been proposed to improve the thermal loading performance that will lead to a reasonable human comfort and reduce energy consumption.

An Anisotropic Model of Damage and Unilateral Effect for Brittle Materials

This work deals with the initial applications and formulation of an anisotropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.

Mechanical Properties of Fibre Reinforced Concrete - A Comparative Experimental Study

This paper in essence presents comparative experimental data on the mechanical performance of steel and synthetic fibre-reinforced concrete under compression, tensile split and flexure. URW1050 steel fibre and HPP45 synthetic fibre, both with the same concrete design mix, have been used to make cube specimens for a compression test, cylinders for a tensile split test and beam specimens for a flexural test. The experimental data demonstrated steel fibre reinforced concrete to be stronger in flexure at early stages, whilst both fibre reinforced concrete types displayed comparatively the same performance in compression, tensile splitting and 28-day flexural strength. In terms of post-crack controlHPP45 was preferable.

The Effect of Confinement Shapes on Over-Reinforced HSC Beams

High strength concrete (HSC) provides high strength but lower ductility than normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. On the other hand, when designing reinforced concrete beams, designers have to limit the amount of tensile reinforcement to prevent the brittle failure of concrete. Therefore the full potential of the use of steel reinforcement can not be achieved. This paper presents the idea of confining concrete in the compression zone so that the HSC will be in a state of triaxial compression, which leads to improvements in strength and ductility. Five beams made of HSC were cast and tested. The cross section of the beams was 200×300 mm, with a length of 4 m and a clear span of 3.6 m subjected to four-point loading, with emphasis placed on the midspan deflection. The first beam served as a reference beam. The remaining beams had different tensile reinforcement and the confinement shapes were changed to gauge their effectiveness in improving the strength and ductility of the beams. The compressive strength of the concrete was 85 MPa and the tensile strength of the steel was 500 MPa and for the stirrups and helixes was 250 MPa. Results of testing the five beams proved that placing helixes with different diameters as a variable parameter in the compression zone of reinforced concrete beams improve their strength and ductility.

Statistical Analysis of Stresses in Rigid Pavement

Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.

The Effects of Bolt Spacing on Composite Shear Wall Behavior

Composite steel shear wall is a lateral load resisting system which consists of a steel plate with concrete wall attached to one or both sides to prevent it from elastic buckling. The composite behavior is ensured by utilizing high-strength bolts. This paper investigates the effect of distance between bolts, and for this purpose 14 one-story one-bay specimens with various bolts spacing were modeled by finite element code which is developed by the authors. To verify the model, numerical results were compared with a valid experiment which illustrate proper agreement. Results depict increasing the distance between bolts would improve the seismic ever, this increase must be limited, because of large distances will cause widespread buckling of the steel plate in free subpanels between bolts and would result in no improvement. By comparing the results in elastic region, it was observed initial stiffness is not affected by changing the distance.

Determination of Moisture Diffusivity of AACin Drying Phase using Genetic Algorithm

The current practice of determination of moisture diffusivity of building materials under laboratory conditions is predominantly aimed at the absorption phase. The main reason is the simplicity of the inverse analysis of measured moisture profiles. However, the liquid moisture transport may exhibit significant hysteresis. Thus, the moisture diffusivity should be different in the absorption (wetting) and desorption (drying) phase. In order to bring computer simulations of hygrothermal performance of building materials closer to the reality, it is then necessary to find new methods for inverse analysis which could be used in the desorption phase as well. In this paper we present genetic algorithm as a possible method of solution of the inverse problem of moisture transport in desorption phase. Its application is demonstrated for AAC as a typical building material.

Influence of Fibre Content on Crack Propagation Rate in Fibre-Reinforced Concrete Beams

Experimental study on the influence of fibre content on crack behaviour and propagation in synthetic-fibre reinforced beams has been reported in this paper. The tensile behaviour of metallic fibre concrete is evaluated in terms of residual flexural tensile strength values determined from the load-crack mouth opening displacement curve or load-deflection curve obtained by applying a centre-point load on a simply supported notched prism. The results achieved demonstrate that an increase in fibre content has an almost negligible effect on compressive and tensile splitting properties, causes a marginal increment in flexural tensile strength and increasesthe Re3 value.

A Model of a Heat Radiation on a Mould Surface in the Car Industry

This article is focused on the calculation of heat radiation intensity and its optimization on an aluminum mould surface. The inside of the mould is sprinkled with a special powder and its outside is heated by infra heaters located above the mould surface, up to a temperature of 250°C. By this way artificial leathers in the car industry are produced (e. g. the artificial leather on a car dashboard). A mathematical model of heat radiation of infra heaters on a mould surface is described in this paper. This model allows us to calculate a heat-intensity radiation on the mould surface for the concrete location of infra heaters above the mould surface. It is necessary to ensure approximately the same heat intensity radiation on the mould surface by finding a suitable location for the infra heaters, and in this way the same material structure and color of artificial leather. In the model we have used a genetic algorithm to optimize the radiation intensity on the mould surface. Experimental measured values for the heat radiation intensity by a sensor in the surroundings of an infra heater are used for the calculation procedures. A computational procedure was programmed in language Matlab.

Effect of Using Stone Cutting Waste on the Compression Strength and Slump Characteristics of Concrete

The aim of this work is to study the possible use of stone cutting sludge waste in concrete production, which would reduce both the environmental impact and the production cost .Slurry sludge was used a source of water in concrete production, which was obtained from Samara factory/Jordan, The physico-chemical and mineralogical characterization of the sludge was carried out to identify the major components and to compare it with the typical sand used to produce concrete. Samples analysis showed that 96% of slurry sludge volume is water, so it should be considered as an important source of water. Results indicated that the use of slurry sludge as water source in concrete production has insignificant effect on compression strength, while it has a sharp effect on the slump values. Using slurry sludge with a percentage of 25% of the total water content obtained successful concrete samples regarding slump and compression tests. To clarify slurry sludge, settling process can be used to remove the suspended solid. A settling period of 30 min. obtained 99% removal efficiency. The clarified water is suitable for using in concrete mixes, which reduce water consumption, conserve water recourses, increase the profit, reduce operation cost and save the environment. Additionally, the dry sludge could be used in the mix design instead of the fine materials with sizes < 160 um. This application could conserve the natural materials and solve the environmental and economical problem caused by sludge accumulation.

Steel–CFRP Composite (CFRP Laminate Sandwiched between Mild Steel Strips) and It-s Behavior as Stirrup in Beams

In this present study, experimental work was conducted to study the effectiveness of newly innovated steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups. A total numbers of eight concrete beams were tested under four point loads. Each beam measured 1600 mm long, 160mm width and 240 mm depth. The beams were reinforced with different shear reinforcements; one without stirrups, one with steel stirrups and six with different types and numbers of steel-CRFR stirrups. Test results indicated that the steel-CFRP stirrups had enhanced the shear strength capacity of beams. Moreover, the tests revealed that steel- CFRP stirrups reached to their ultimate tensile strength unlike FRP stirrups which rupture at much lower level than their ultimate strength as werereported in various researches.

Torsion Behavior of Steel Fibered High Strength Self Compacting Concrete Beams Reinforced by GFRB Bars

This paper investigates experimentally and analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Steel fibered high strength self compacting concrete (SFHSSCC) and GFRP bars became in the recent decades a very important materials in the structural engineering field. The use of GFRP bars to replace steel bars has emerged as one of the many techniques put forward to enhance the corrosion resistance of reinforced concrete structures. High strength concrete and GFRP bars attract designers and architects as it allows improving the durability as well as the esthetics of a construction. One of the trends in SFHSSCC structures is to provide their ductile behavior and additional goal is to limit development and propagation of macro-cracks in the body of SFHSSCC elements. SFHSSCC and GFRP bars are tough, improve the workability, enhance the corrosion resistance of reinforced concrete structures, and demonstrate high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents. Three types of volume fraction from hooked shape steel fibers are used in this study, the hooked steel fibers were evaluated in volume fractions ranging between 0.0%, 0.75% and 1.5%. The beams shape is chosen to create the required forces (i.e. torsion and bending moments simultaneously) on the test zone. A total of seven beams were tested, classified into three groups. All beams, have 200cm length, cross section of 10×20cm, longitudinal bottom reinforcement of 3

On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems

The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.

A Study on Cement-Based Composite Containing Polypropylene Fibers and Finely Ground Glass Exposed to Elevated Temperatures

High strength concrete has been used in situations where it may be exposed to elevated temperatures. Numerous authors have shown the significant contribution of polypropylene fiber to the spalling resistance of high strength concrete. When cement-based composite that reinforced by polypropylene fibers heated up to 170 °C, polypropylene fibers readily melt and volatilize, creating additional porosity and small channels in to the matrix that cause the poor structure and low strength. This investigation develops on the mechanical properties of mortar incorporating polypropylene fibers exposed to high temperature. Also effects of different pozzolans on strength behaviour of samples at elevated temperature have been studied. To reach this purpose, the specimens were produced by partial replacement of cement with finely ground glass, silica fume and rice husk ash as high reactive pozzolans. The amount of this replacement was 10% by weight of cement to find the effects of pozzolans as a partial replacement of cement on the mechanical properties of mortars. In this way, lots of mixtures with 0%, 0.5%, 1% and 1.5% of polypropylene fibers were cast and tested for compressive and flexural strength, accordance to ASTM standard. After that specimens being heated to temperatures of 300, 600 °C, respectively, the mechanical properties of heated samples were tested. Mechanical tests showed significant reduction in compressive strength which could be due to polypropylene fiber melting. Also pozzolans improve the mechanical properties of sampels.

Laboratory Investigations on Mechanical Properties of High Volume Fly Ash Concrete and Composite Sections

Use of fly ash as a supplementary cementing material in large volumes can bring both technological and economic benefits for concrete industry. In this investigation mix proportions for high volume fly ash concrete were determined at cement replacement levels of 50%, 55%, 60% and 65% with low calcium fly ash. Flexural and compressive strengths of different mixes were measured at ages of 7, 28 and 90 days. Flexural strength of composite section prepared from pavement quality and lean high volume fly ash concrete was determined at the age of 28 days. High volume fly ash concrete mixes exhibited higher rate of strength gain and age factors than corresponding reference concrete mixes. The optimum cement replacement level for pavement quality concrete was found to be 60%. The consideration of bond between pavement quality and lean of high volume fly ash concrete will be beneficial in design of rigid pavements.

Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks

The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.

Evaluation of the Displacement-Based and the Force-Based Adaptive Pushover Methods in Seismic Response Estimation of Irregular Buildings Considering Torsional Effects

Recent years, adaptive pushover methods have been developed for seismic analysis of structures. Herein, the accuracy of the displacement-based adaptive pushover (DAP) method, which is introduced by Antoniou and Pinho [2004], is evaluated for Irregular buildings. The results are compared to the force-based procedure. Both concrete and steel frame structures, asymmetric in plan and elevation are analyzed and also torsional effects are taking into the account. These analyses are performed using both near fault and far fault records. In order to verify the results, the Incremental Dynamic Analysis (IDA) is performed.

AJcFgraph - AspectJ Control Flow Graph Builder for Aspect-Oriented Software

The ever-growing usage of aspect-oriented development methodology in the field of software engineering requires tool support for both research environments and industry. So far, tool support for many activities in aspect-oriented software development has been proposed, to automate and facilitate their development. For instance, the AJaTS provides a transformation system to support aspect-oriented development and refactoring. In particular, it is well established that the abstract interpretation of programs, in any paradigm, pursued in static analysis is best served by a high-level programs representation, such as Control Flow Graph (CFG). This is why such analysis can more easily locate common programmatic idioms for which helpful transformation are already known as well as, association between the input program and intermediate representation can be more closely maintained. However, although the current researches define the good concepts and foundations, to some extent, for control flow analysis of aspectoriented programs but they do not provide a concrete tool that can solely construct the CFG of these programs. Furthermore, most of these works focus on addressing the other issues regarding Aspect- Oriented Software Development (AOSD) such as testing or data flow analysis rather than CFG itself. Therefore, this study is dedicated to build an aspect-oriented control flow graph construction tool called AJcFgraph Builder. The given tool can be applied in many software engineering tasks in the context of AOSD such as, software testing, software metrics, and so forth.

Comparison of Conventional and “ECO“Transportation Pavements in Cyprus using Life Cycle Approach

Road industry has challenged the prospect of ecoconstruction. Pavements may fit within the framework of sustainable development. Hence, research implements assessments of conventional pavements impacts on environment in use of life cycle approach. To meet global, and often national, targets on pollution control, newly introduced pavement designs are under study. This is the case of Cyprus demonstration, which occurred within EcoLanes project work. This alternative pavement differs on concrete layer reinforced with tire recycling product. Processing of post-consumer tires produces steel fibers improving strength capacity against cracking. Thus maintenance works are relevantly limited in comparison to flexible pavement. This enables to be more ecofriendly, referenced to current study outputs. More specific, proposed concrete pavement life cycle processes emits 15 % less air pollutants and consumes 28 % less embodied energy than those of the asphalt pavement. In addition there is also a reduction on costs by 0.06 %.