The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Histopathological Changes in Liver and Muscle of Tilapia Fish from QIRE Exposed to Concentrations of Heavy Metals

Toxicity of copper (Cu), lead (Pb) and iron (Fe) to Tilapia guinensis was carried out for 4 days with a view to determining their effects on the liver and muscle tissues. Tilapia guinensis samples of about 10 - 14cm length and 0.2 – 0.4kg weight each were obtained from University of Calabar fish ponds and acclimated for three (3) days before the experimental set up. Survivors after the 96-hr LC50 test period were selected from test solutions of the heavy metals for the histopathological studies. Histological preparations of liver and muscle tissues were randomly examined for histopathological lesions. Results of the histological examinations showed gross abnormalities in the liver tissues due to pathological and degenerative changes compared to liver and muscle tissues from control samples (tilapia fishes from aquaria without heavy metals). Extensive hepatocyte necrosis with chronic inflammatory changes was observed in the liver of fishes exposed to Cu solution. Similar but less damaging effects were observed in the liver of fishes exposed to Pb and Fe. The extent of lesion observed was therefore heavy metal-related. However, no pathologic changes occurred in the muscle tissues.

The Effect of Nose Radius on Cutting Force and Temperature during Machining Titanium Alloy (Ti-6Al-4V)

This paper presents a study the effect of nose radius (Rz-mm) on cutting force components and temperatures during the machining simulation in an orthogonal cutting process for titanium alloy (Ti-6Al-4V). The cutting process was performed at various nose radiuses (Rz-mm) while the depth of cut (d-mm), feed rate (fmm/ tooth) and cutting speed (vc-m/ min) were remained constant. The main cutting force (Fc), feed cutting force (Ft) and temperatures were estimated by using finite element modeling (FEM) through ABAQUS/EXPLICIT software and the simulation was developed the two-dimension via an orthogonal cutting process during machining titanium alloy (Ti-6Al-4V). The results led to the conclusion that the nose radius (Rz-mm) has affected directly on the cutting force components. However, temperature gave no indication or has no significant relation with nose radius during machining titanium alloy (Ti-6Al-4V). Hence, any increase or decrease in the nose radius (Rzmm) during machining operation led to effect on the cutting forces and thus it will be effective on surface finish, quality, and quantity of products.

Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites

Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13%, respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.

Effectiveness of Biopesticide against Insects Pest and Its Quality of Pomelo (Citrus maxima Merr.)

Effect of biopesticide from wood vinegar and extracted substances from 3 medicinal plants such as: non taai yak (Stemona tuberosa Lour), boraphet (Tinospora crispa Mier) and derris (Derris elliptica Roxb) were tested on the age five years of pomelo. The selected pomelo was carried out for insects’ pest control and its quality. The experimental site was located at farmer’s orchard in Phichit Province, Thailand. This study was undertaken during the drought season (December to March). The extracted from plants and wood vinegar were evaluated in 6 treatments: 1) water as control; 2) wood vinegar; 3) S. tuberosa Lour; 4) T. crispa Mier; 5) D. elliptica Roxb; 6) mixed (wood vinegar + S. tuberosa Lour + T. crispa Mier + D. elliptica Roxb). The experiment was RCB with 6 treatments and 3 replications per treatment. The results showed that T. crispa Mier was the highest effectiveness for reduction population of thrips (Scirtothrips dorsalis Hood) and citrus leaf miner (Phyllocnistis citrella Stainton) at 14.10 and 15.37 respectively, followed by treatment of mixed, D. elliptica Roxb, S. tuberosa Lour and wood vinegar with significance different. Additionally, T. crispa Mier promoted the high quality of harvested pomelo in term of thickness of skin at 12.45 mm and S. tuberosa Lour gave the high quality of the pomelo in term of firmness (276.5 kg/cm2) and brix (11.0%).

Effect of Be, Zr and Heat Treatment on Mechanical Behavior of Cast Al-Mg-Zn-Cu Alloys (7075)

The present study was undertaken to investigate the effect of aging parameters (time and temperature) on the mechanical properties of Be-and/or Zr- treated Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys containing Be and/or Zr. Different aging treatment were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural and artificial aging was carried out at room temperature, 120C, 150C, 180C and 220C for different periods of time. Duplex aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation data results as a function of different aging parameters are analysed. A statistical design of experiments (DOE) approach using fractional factorial design is applied to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be- and/or Zr- treated 7075 alloys. Mathematical models are developed to relate the alloy mechanical properties with the different aging parameters.

Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Aging treatments were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Double aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation as a function of different pre-aging and aging parameters are analyzed to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be-treated 7075 alloys.

Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool

Metal matrix composites (MMCs) attract considerable attention as a result from its ability in providing a high strength, high modulus, high toughness, high impact properties, improving wear resistance and providing good corrosion resistance compared to unreinforced alloy. Aluminium Silicon (Al/Si) alloy MMC has been widely used in various industrial sectors such as in transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is an MMC that had been reinforced with aluminium nitrate (AlN) particle and become a new generation material use in automotive and aerospace sector. The AlN is one of the advance material that have a bright prospect in future since it has features such as lightweight, high strength, high hardness and stiffness quality. However, the high degree of ceramic particle reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density is the main problem which leads to difficulties in machining process. This paper examined the tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 (Titanium diboride) coated carbide cutting tool. The volume of the AlN reinforced particle was 10% and milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were at the cutting speed of (230, 300 and 370m/min, feed rate of 0.8, Depth of Cut (DoC) at 0.4m). The Sometech SV-35 video microscope system used to quantify of the tool wear. The result shown that tool life span increasing with the cutting speeds at (370m/min, feed rate of 0.8mm/tooth and DoC at 0.4mm) which constituted an optimum condition for longer tool life lasted until 123.2 mins. Meanwhile, at medium cutting speed which at 300m/m, feed rate of 0.8mm/tooth and depth of cut at 0.4mm we found that tool life span lasted until 119.86 mins while at low cutting speed it lasted in 119.66 mins. High cutting speed will give the best parameter in cutting AlSi/AlN MMCs material. The result will help manufacturers in machining process of AlSi/AlN MMCs materials.

Concept for Determining the Focus of Technology Monitoring Activities

Identification and selection of appropriate product and manufacturing technologies are key factors for competitiveness and market success of technology-based companies. Therefore, many companies perform technology intelligence (TI) activities to ensure the identification of evolving technologies at the right time. Technology monitoring is one of the three base activities of TI, besides scanning and scouting. As the technological progress is accelerating, more and more technologies are being developed. Against the background of limited resources it is therefore necessary to focus TI activities. In this paper we propose a concept for defining appropriate search fields for technology monitoring. This limitation of search space leads to more concentrated monitoring activities. The concept will be introduced and demonstrated through an anonymized case study conducted within an industry project at the Fraunhofer Institute for Production Technology IPT. The described concept provides a customized monitoring approach, which is suitable for use in technology-oriented companies. It is shown in this paper that the definition of search fields and search tasks are suitable methods to define topics of interest and thus to align monitoring activities. Current as well as planned product, production and material technologies and existing skills, capabilities and resources form the basis for derivation of relevant search areas. To further improve the concept of technology monitoring the proposed concept should be extended during future research e.g. by the definition of relevant monitoring parameters.

Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo

Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti-15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the microstructure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti- 15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys.

Effect of Different Microbial Strains on Biological Pretreatment of Sugarcane Bagasse for Enzymatic Hydrolysis

Among agricultural residues, sugarcane bagasse is one of the most convincing raw materials for the production of bioethanol due to its availability, and low cost through enzymatic hydrolysis and yeast fermentation. A pretreatment step is needed to enhance the enzymatic step. In this study, sugarcane bagasse (SCB), one of the most abundant agricultural residues in Thailand, was pretreated biologically with various microorganisms of white-rot fungus—Phanerochaete sordid (SK 7), Cellulomonas sp. (TISTR 784), and strain A 002 (Bacillus subtilis isolated from Thai higher termites). All samples with various microbial pretreatments were further hydrolyzed enzymatically by a commercial enzyme obtained from Aspergillus niger. The results showed that the pretreatment with the white-rot fungus gave the highest glucose concentration around two-fold higher when compared with the others.

Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review

Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.

Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400 ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab.The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Energy Efficient Construction and the Seismic Resistance of Passive Houses

Recently, an increasing trend of passive and low-energy buildings transferring form non earthquake-prone to earthquake-prone regions has thrown out the question about the seismic safety of such buildings. The paper describes the most commonly used thermal insulating materials and the special details, which could be critical from the point of view of earthquake resistance. The most critical appeared to be the cases of buildings founded on the RC foundation slab lying on a thermal insulation (TI) layer made of extruded polystyrene (XPS). It was pointed out that in such cases the seismic response of such buildings might differ to response of their fixed based counterparts. The main parameters that need special designers’ attention are: the building’s lateral top displacement, the ductility demand of the superstructure, the foundation friction coefficient demand, the maximum compressive stress in the TI layer and the percentage of the uplifted foundation. The analyses have shown that the potentially negative influences of inserting the TI under the foundation slab could be expected only for slender high-rise buildings subjected to severe earthquakes. Oppositely it was demonstrated for the foundation friction coefficient demand which could exceed the capacity value yet in the case of low-rise buildings subjected to moderate earthquakes. Some suggestions to prevent the horizontal shifts are also given.

A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates

Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.

Effect of Structure on Properties of Incrementally Formed Titanium Alloy Sheets

Asymmetric incremental sheet forming (AISF) could significantly reduce costs incurred by the fabrication of complex industrial components with a minimal environmental impact. The AISF experiments were carried out on commercially pure titanium (Ti-Gr2), Timetal (15-3-3-3) alloy, and Ti-6Al-4V (Ti-Gr5) alloy. A special testing geometry was used to characterize the titanium alloys properties from the point of view of the forming zone and titanium structure effect. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements.The highest differences in the parameters assessed as a function of the sampling zone were observed in the case of alpha-phase Ti-Gr2at the expense of the most substantial sheet thinning occurrence. A springback causes a smaller stored deformation in Timetal (β alloy) resulting in less pronounced microstructure refinement and microhardness increase. Ti-6Al-4V alloy exhibited early failure due to its poor formability at ambient temperature.  

Solar Photocatalytic Degradation of Phenol in Aqueous Solutions Using Titanium Dioxide

In this study, photocatalytic degradation of phenol by  titanium dioxide (TiO2) in aqueous solution was evaluated. The UV  energy of solar light was utilized by compound parabolic collectors  (CPCs) technology. The effect of irradiation time, initial pH, and  dosage of TiO2 were investigated. Aromatic intermediates (catechol,  benzoquinone, and hydroquinone) were quantified during the reaction  to study the pathways of the oxidation process. 94.5% degradation  efficiency of phenol was achieved after 150 minutes of irradiation  when the initial concentration was 100 mg/L. The dosage of TiO2  significantly affected the degradation efficiency of phenol. The  observed optimum pH for the reaction was 5.2. Phenol photocatalytic  degradation fitted to the pseudo-first order kinetic according to  Langmuir–Hinshelwood model.