Interactions between Cells and Nanoscale Surfaces of Oxidized Silicon Substrates

The importance for manipulating an incorporated scaffold and directing cell behaviors is well appreciated for tissue engineering. Here, we developed newly nano-topographic oxidized silicon nanosponges capable of being various chemical modifications to provide much insight into the fundamental biology of how cells interact with their surrounding environment in vitro. A wet etching technique is exerted to allow us fabricated the silicon nanosponges in a high-throughput manner. Furthermore, various organo-silane chemicals enabled self-assembled on the surfaces by vapor deposition. We have found that Chinese hamster ovary (CHO) cells displayed certain distinguishable morphogenesis, adherent responses, and biochemical properties while cultured on these chemical modified nano-topographic structures in compared with the planar oxidized silicon counterparts, indicating that cell behaviors can be influenced by certain physical characteristic derived from nano-topography in addition to the hydrophobicity of contact surfaces crucial for cell adhesion and spreading. Of particular, there were predominant nano-actin punches and slender protrusions formed while cells were cultured on the nano-topographic structures. This study shed potential applications of these nano-topographic biomaterials for controlling cell development in tissue engineering or basic cell biology research.

New Concept for the Overall use of Renewable Energy

The development and application of wind power for renewable energy has attracted growing interest in recent years. Renewable energy sources are attracting much alteration as they can reduce both environmental damage and dependence on fossil fuels. With the growing need for sustainable energy supplies, a case is made for decentralized, stand-alone power supplies (SAPS) as an alternative to power grids. In the era which traditional petroleum energy resource decreasing and the green house affect significant increasing, the development and usage of regenerative resources is inevitable. Due to the contribution of the pioneers, the development of regenerative resources already has a remarkable achievement; however, in the view of economy and quantity, it is still a long road for regenerative energy to replace traditional petroleum energy. In our prospective, in stead of investigate larger regenerative energy equipment, it is much wiser to think about the blind side and breakthrough of the current technique.

SVM-Based Detection of SAR Images in Partially Developed Speckle Noise

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of SAR (synthetic aperture radar) images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to real SAR images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected SAR images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (the detection hypotheses) in the original images.

Load Balancing in Heterogeneous P2P Systems using Mobile Agents

Use of the Internet and the World-Wide-Web (WWW) has become widespread in recent years and mobile agent technology has proliferated at an equally rapid rate. In this scenario load balancing becomes important for P2P systems. Beside P2P systems can be highly heterogeneous, i.e., they may consists of peers that range from old desktops to powerful servers connected to internet through high-bandwidth lines. There are various loads balancing policies came into picture. Primitive one is Message Passing Interface (MPI). Its wide availability and portability make it an attractive choice; however the communication requirements are sometimes inefficient when implementing the primitives provided by MPI. In this scenario we use the concept of mobile agent because Mobile agent (MA) based approach have the merits of high flexibility, efficiency, low network traffic, less communication latency as well as highly asynchronous. In this study we present decentralized load balancing scheme using mobile agent technology in which when a node is overloaded, task migrates to less utilized nodes so as to share the workload. However, the decision of which nodes receive migrating task is made in real-time by defining certain load balancing policies. These policies are executed on PMADE (A Platform for Mobile Agent Distribution and Execution) in decentralized manner using JuxtaNet and various load balancing metrics are discussed.

Bioefficacy of Some Oil-Mixed Plant Derivatives against African Mud Catfish (Clarias gariepinus) Beetles, Dermestes maculatus and Necrobia rufipes

The efficacy of the separate mixing of four tropical spicy and medicinal plant products: Dennettia tripetala Baker (pepper fruit), Eugenia aromatica Hook (clove), Piper guineense (Schum and Thonn) (black pepper) and Monodora myristica (Dunal) (African nut-meg) with a household vegetable oil was evaluated under tropical storage conditions for the control and reproductive performance of Dermestes maculatus (De Geer) (hide beetle) and Necroba rufipes (De Geer) (copra beetle) on African catfish, Clarias gariepinus (Burchell). Each of the plant materials was pulverized into powder and applied as a mix of 1ml of oil and plant powder at 2.5, 5.0, 7.5 and 10.0g per 100g of dried fish, and allowed to dry for 6h. Each of the four oil-mixed powder treatments evoked significant (P < 05) mortalities of the two insects compared with the control (oil only) at 1, 3 and 7 days post treatment. The oil-powder mixture dosages did not prevent insect egg hatchability but while the emergent larvae on the treated samples died, the emergent larvae in the control survived into adults. The application of oil-mixed powders effectively suppressed the emergence of the larvae of the beetles. Similarly, each of the oil-powder mixtures significantly reduced weight loss in smoked fish that were exposed to D. maculatus and N. rufipes when compared to the control (P < 05). The results of this study suggest that the plant powders rather than the domestic oil demonstrated protective ability against the fish beetles and confirm the efficacy of the plant products as pest control agents.

QoS Routing in Wired Sensor Networks with Partial Updates

QoS routing is an important component of Traffic Engineering in networks that provide QoS guarantees. QoS routing is dependent on the link state information which is typically flooded across the network. This affects both the quality of the routing and the utilization of the network resources. In this paper, we examine establishing QoS routes with partial state updates in wired sensor networks.

Detection of Pathogenic Escherichia coli Strains Pollution in Red Deer Meat in Latvia and Determination the Compatibility of VT1, VT2, eae A Genes in their Isolate

Tasks of the work were study the possible E.coli contamination in red deer meat, identify pathogenic strains from isolated E.coli, determine their incidence in red deer meat and determine the presence of VT1, VT2 and eaeA genes for the pathogenic E.coli. 8 (10%) samples were randomly selected from 80 analysed isolates of E.coli and PCR reaction was performed on them. PCR was done both on initial materials – samples of red deer meat - and for already isolated liqueurs. Two of analysed venison samples contain verotoxin-producing strains of E. coli. It means that this meat is not safe to consumer. It was proven by the sequestration reaction of E. coli and by comparison of the obtained results with the database of microorganism genome available on the internet that the isolated culture corresponds to region 16S rDNS of E. coli thus presenting correctness of the microbiological methods.

Neural Network Evaluation of FRP Strengthened RC Buildings Subjected to Near-Fault Ground Motions having Fling Step

Recordings from recent earthquakes have provided evidence that ground motions in the near field of a rupturing fault differ from ordinary ground motions, as they can contain a large energy, or “directivity" pulse. This pulse can cause considerable damage during an earthquake, especially to structures with natural periods close to those of the pulse. Failures of modern engineered structures observed within the near-fault region in recent earthquakes have revealed the vulnerability of existing RC buildings against pulse-type ground motions. This may be due to the fact that these modern structures had been designed primarily using the design spectra of available standards, which have been developed using stochastic processes with relatively long duration that characterizes more distant ground motions. Many recently designed and constructed buildings may therefore require strengthening in order to perform well when subjected to near-fault ground motions. Fiber Reinforced Polymers are considered to be a viable alternative, due to their relatively easy and quick installation, low life cycle costs and zero maintenance requirements. The objective of this paper is to investigate the adequacy of Artificial Neural Networks (ANN) to determine the three dimensional dynamic response of FRP strengthened RC buildings under the near-fault ground motions. For this purpose, one ANN model is proposed to estimate the base shear force, base bending moments and roof displacement of buildings in two directions. A training set of 168 and a validation set of 21 buildings are produced from FEA analysis results of the dynamic response of RC buildings under the near-fault earthquakes. It is demonstrated that the neural network based approach is highly successful in determining the response.

Development of Non-functional Requirements for Decision Support Systems

Decision Support System (DSS) are interactive software systems that are built to assist the management of an organization in the decision making process when faced with nonroutine problems in a specific application domain. Non-functional requirements (NFRs) for a DSS deal with the desirable qualities and restrictions that the DSS functionalities must satisfy. Unlike the functional requirements, which are tangible functionalities provided by the DSS, NFRs are often hidden and transparent to DSS users but affect the quality of the provided functionalities. NFRs are often overlooked or added later to the system in an ad hoc manner, leading to a poor overall quality of the system. In this paper, we discuss the development of NFRs as part of the requirements engineering phase of the system development life cycle of DSSs. To help eliciting NFRs, we provide a comprehensive taxonomy of NFRs for DSSs.

An Analysis of the Optimization Condition of Plasma Generator for Air Conditioner System

This research aimed to develop plasma system used in air conditioners. This developed plasma system could be installed in the air conditioners - all split type. The quality of air could be improved to be equal to present plasma system. Development processes were as follows: 1) to study the plasma system used in the air conditioners, 2) to design a plasma generator, 3) to develop the plasma generator, and 4) to test its performance in many types of the air conditioners. This plasma system was developed by AC high voltage – 14 kv with a frequency of 50 kHz. Carbon was a conductor to generate arc in air purifier system. The research was tested by installing the plasma generator in the air conditioners - wall type. Whereas, there were 3 types of installations: air flow out, air flow in, and room center. The result of the plasma generator installed in the air conditioners, split type, revealed that the air flow out installation provided the highest average of o-zone at 223 mg/h. This type of installation provided the highest efficiency of air quality improvement. Moreover, the air flow in installation and the room center installation provided the average of the o-zone at 163 mg/h and 64 mg/h, respectively.

Experimental Study on Damping Ratios of in-situ Buildings

Accurate evaluation of damping ratios involving soilstructure interaction (SSI) effects is the prerequisite for seismic design of in-situ buildings. This study proposes a combined approach to identify damping ratios of SSI systems based on ambient excitation technique. The proposed approach is illustrated with main test process, sampling principle and algorithm steps through an engineering example, as along with its feasibility and validity. The proposed approach is employed for damping ratio identification of 82 buildings in Xi-an, China. Based on the experimental data, the variation range and tendency of damping ratios of these SSI systems, along with the preliminary influence factor, are shown and discussed. In addition, a fitting curve indicates the relation between the damping ratio and fundamental natural period of SSI system.

Identification of Reusable Software Modules in Function Oriented Software Systems using Neural Network Based Technique

The cost of developing the software from scratch can be saved by identifying and extracting the reusable components from already developed and existing software systems or legacy systems [6]. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. We have used metric based approach for characterizing a software module. In this present work, the metrics McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component are used as input attributes to the different types of Neural Network system and reusability of the software component is calculated. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Taxonomy of Structured P2P Overlay Networks Security Attacks

The survey and classification of the different security attacks in structured peer-to-peer (P2P) overlay networks can be useful to computer system designers, programmers, administrators, and users. In this paper, we attempt to provide a taxonomy of structured P2P overlay networks security attacks. We have specially focused on the way these attacks can arise at each level of the network. Moreover, we observed that most of the existing systems such as Content Addressable Network (CAN), Chord, Pastry, Tapestry, Kademlia, and Viceroy suffer from threats and vulnerability which lead to disrupt and corrupt their functioning. We hope that our survey constitutes a good help for who-s working on this area of research.

Simulation of Lid Cavity Flow in Rectangular, Half-Circular and Beer Bucket Shapes using Quasi-Molecular Modeling

We developed a new method based on quasimolecular modeling to simulate the cavity flow in three cavity shapes: rectangular, half-circular and bucket beer in cgs units. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a cavity flow was simulated, the instantaneous velocity vector fields were obtained by using an inverse distance weighted interpolation method. In all three cavity shapes, fluid motion was rotated counter-clockwise. The velocity vector fields of the three cavity shapes showed a primary vortex located near the upstream corners at time t ~ 0.500 s, t ~ 0.450 s and t ~ 0.350 s, respectively. The configurational kinetic energy of the cavities increased as time increased until the kinetic energy reached a maximum at time t ~ 0.02 s and, then, the kinetic energy decreased as time increased. The rectangular cavity system showed the lowest kinetic energy, while the half-circular cavity system showed the highest kinetic energy. The kinetic energy of rectangular, beer bucket and half-circular cavities fluctuated about stable average values 35.62 x 103, 38.04 x 103 and 40.80 x 103 ergs/particle, respectively. This indicated that the half-circular shapes were the most suitable shape for a shrimp pond because the water in shrimp pond flows best when we compared with rectangular and beer bucket shape.

Development of Intelligent Time/Frequency Based Signal Detection Algorithm for Intrusion Detection System

For the past couple of decades Weak signal detection is of crucial importance in various engineering and scientific applications. It finds its application in areas like Wireless communication, Radars, Aerospace engineering, Control systems and many of those. Usually weak signal detection requires phase sensitive detector and demodulation module to detect and analyze the signal. This article gives you a preamble to intrusion detection system which can effectively detect a weak signal from a multiplexed signal. By carefully inspecting and analyzing the respective signal, this system can successfully indicate any peripheral intrusion. Intrusion detection system (IDS) is a comprehensive and easy approach towards detecting and analyzing any signal that is weakened and garbled due to low signal to noise ratio (SNR). This approach finds significant importance in applications like peripheral security systems.

Collaborative Document Evaluation: An Alternative Approach to Classic Peer Review

Research papers are usually evaluated via peer review. However, peer review has limitations in evaluating research papers. In this paper, Scienstein and the new idea of 'collaborative document evaluation' are presented. Scienstein is a project to evaluate scientific papers collaboratively based on ratings, links, annotations and classifications by the scientific community using the internet. In this paper, critical success factors of collaborative document evaluation are analyzed. That is the scientists- motivation to participate as reviewers, the reviewers- competence and the reviewers- trustworthiness. It is shown that if these factors are ensured, collaborative document evaluation may prove to be a more objective, faster and less resource intensive approach to scientific document evaluation in comparison to the classical peer review process. It is shown that additional advantages exist as collaborative document evaluation supports interdisciplinary work, allows continuous post-publishing quality assessments and enables the implementation of academic recommendation engines. In the long term, it seems possible that collaborative document evaluation will successively substitute peer review and decrease the need for journals.

Sensitivity Analysis of Real-Time Systems

Verification of real-time software systems can be expensive in terms of time and resources. Testing is the main method of proving correctness but has been shown to be a long and time consuming process. Everyday engineers are usually unwilling to adopt formal approaches to correctness because of the overhead associated with developing their knowledge of such techniques. Performance modelling techniques allow systems to be evaluated with respect to timing constraints. This paper describes PARTES, a framework which guides the extraction of performance models from programs written in an annotated subset of C.

Enhancing Efficiency for Reducing Sugar from Cassava Bagasse by Pretreatment

Cassava bagasse is one of major biomass wastes in Thailand from starch processing industry, which contains high starch content of about 60%. The object of this study was to investigate the optimal condition for hydrothermally pretreating cassava baggasses with or without acid addition. The pretreated samples were measured reducing sugar yield directly or after enzymatic hydrolysis (alpha-amylase). In enzymatic hydrolysis, the highest reducing sugar content was obtained under hydrothermal conditions for at 125oC for 30 min. The result shows that pretreating cassava baggasses increased the efficiency of enzymatic hydrolysis. For acid hydrolysis, pretreating cassava baggasses with sulfuric acid at 120oC for 60 min gave a maximum reducing sugar yield. In this study, sulfuric acid had a greater capacity for hydrolyzing cassava baggasses than phosphoric acid. In comparison, dilute acid hydrolysis to provide a higher yield of reducing sugar than the enzymatic hydrolysis combined hydrothermal pretreatment. However, enzymatic hydrolysis in a combination with hydrothermal pretreatment was an alternative to enhance efficiency reducing sugar production from cassava bagasse.

Residence Time Distribution in a Two Impinging Streams Cyclone Reactor: CFD Prediction and Experimental Validation

The quantified residence time distribution (RTD) provides a numerical characterization of mixing in a reactor, thus allowing the process engineer to better understand mixing performance of the reactor.This paper discusses computational studies to investigate flow patterns in a two impinging streams cyclone reactor(TISCR) . Flow in the reactor was modeled with computational fluid dynamics (CFD). Utilizing the Eulerian- Lagrangian approach, implemented in FLUENT (V6.3.22), particle trajectories were obtained by solving the particle force balance equations. From simulation results obtained at different Δts, the mean residence time (tm) and the mean square deviation (σ2) were calculated. a good agreement can be observed between predicted and experimental data. Simulation results indicate that the behavior of complex reactor systems can be predicted using the CFD technique with minimum data requirement for validation.