Simulation of Lid Cavity Flow in Rectangular, Half-Circular and Beer Bucket Shapes using Quasi-Molecular Modeling

We developed a new method based on quasimolecular modeling to simulate the cavity flow in three cavity shapes: rectangular, half-circular and bucket beer in cgs units. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a cavity flow was simulated, the instantaneous velocity vector fields were obtained by using an inverse distance weighted interpolation method. In all three cavity shapes, fluid motion was rotated counter-clockwise. The velocity vector fields of the three cavity shapes showed a primary vortex located near the upstream corners at time t ~ 0.500 s, t ~ 0.450 s and t ~ 0.350 s, respectively. The configurational kinetic energy of the cavities increased as time increased until the kinetic energy reached a maximum at time t ~ 0.02 s and, then, the kinetic energy decreased as time increased. The rectangular cavity system showed the lowest kinetic energy, while the half-circular cavity system showed the highest kinetic energy. The kinetic energy of rectangular, beer bucket and half-circular cavities fluctuated about stable average values 35.62 x 103, 38.04 x 103 and 40.80 x 103 ergs/particle, respectively. This indicated that the half-circular shapes were the most suitable shape for a shrimp pond because the water in shrimp pond flows best when we compared with rectangular and beer bucket shape.

Simulation of Water Droplet on Horizontally Smooth and Rough Surfaces Using Quasi-Molecular Modelling

We developed a method based on quasi-molecular modelling to simulate the fall of water drops on horizontally smooth and rough surfaces. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a falling water droplet was simulated at low impact velocity on both smooth and rough surfaces, the droplets moved periodically (i.e. the droplets moved up and down for a certain period, finally they stopped moving and reached a steady state), spreading and recoiling without splash or break-up. Spreading rates of falling water droplets increased rapidly as time increased until the spreading rate reached its steady state at time t ~ 0.25 s for rough surface and t ~ 0.40 s for smooth surface. The droplet height above both surfaces decreased as time increased, remained constant after the droplet diameter attained a maximum value and reached its steady state at time t ~ 0.4 s. However, rough surface had higher spreading rates of falling water droplets and lower height on the surface than smooth one.