Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites

In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.

Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Influence of Chemical Treatment on Elastic Properties of the Band Cotton Crepe 100%

The manufacturing technology of band cotton is very delicate and depends to choice of certain parameters such as torsion of warp yarn. The fabric elasticity is achieved without the use of any elastic material, chemical expansion, artificial or synthetic and it’s capable of creating pressures useful for therapeutic treatments. Before use, the band is subjected to treatments of specific preparation for obtaining certain elasticity, however, during its treatment, there are some regression parameters. The dependence of manufacturing parameters on the quality of the chemical treatment was confirmed. The aim of this work is to improve the properties of the fabric through the development of manufacturing technology appropriately. Finally for the treatment of the strip pancake 100% cotton, a treatment method is recommended.

Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study

The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wavebeam both in elevation and azimuth. In this paper a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.

Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with fillervolume- based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Stroma-Providing Activity of Adipose Derived Mesenchymal Stromal Cells in Tissue-Related O2 Microenvironment

This work studied the ability of adipose tissue-derived mesenchymal stromal cells (MSCs) to form stroma for expansion of cord blood hematopoietic cells. We showed that 72-hour interaction of MSCs with cord blood mononuclear cells (MNCs) in vitro at atmospheric (20%) and low (5%) O2 conditions increased the expression of ICAM-1, HCAM (at the beginning of interaction) on MSCs. Viability of MSCs and MNCs were maintained at high level. Adhesion of MNCs to MSCs was faster at 20% O2. MSCs promoted the proliferation of adhered MNCs to form the suspension containing great number of hematopoietic colony-forming units, and this effect was more pronounced at 5% O2. Thus, adipose-derived MSCs supplied sufficient stromal support to cord blood MNCs both at 20% and 5% О2, providing their adhesion with further expansion of new generation of different hematopoietic lineages.

The Effects of 2wt% Cu Addition on the Corrosion Behavior of Heat Treated Al-6Si-0.5Mg-2Ni Alloy

Al-Si-Mg-Ni(-Cu) alloys are widely used in the automotive industry. They have the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties – mainly at high temperatures. The corrosion resistance of these alloys in coastal area, particularly sea water, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization have been used to evaluate the corrosion resistance of Al-6Si-0.5Mg-2Ni (-2Cu) alloys in simulated sea water environments. The potentiodynamic polarization curves reveal that 2 wt% Cu content alloy (Alloy-2) is more prone to corrosion than the Cu free alloy (Alloy-1). But the EIS test results showed that corrosion resistance or charge transfer resistance (Rct) increases with the addition of Cu. Due to addition of Cu and thermal treatment, the magnitude of open circuit potential (OCP), corrosion potential (Ecorr) and pitting corrosion potential (Epit) of Al-6Si-0.5Mg-2Ni alloy in NaCl solution were shifted to the more noble direction.

Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls

Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.

Influence of Optical Fluence Distribution on Photoacoustic Imaging

Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.

Fuzzy C-Means Clustering for Biomedical Documents Using Ontology Based Indexing and Semantic Annotation

Search is the most obvious application of information retrieval. The variety of widely obtainable biomedical data is enormous and is expanding fast. This expansion makes the existing techniques are not enough to extract the most interesting patterns from the collection as per the user requirement. Recent researches are concentrating more on semantic based searching than the traditional term based searches. Algorithms for semantic searches are implemented based on the relations exist between the words of the documents. Ontologies are used as domain knowledge for identifying the semantic relations as well as to structure the data for effective information retrieval. Annotation of data with concepts of ontology is one of the wide-ranging practices for clustering the documents. In this paper, indexing based on concept and annotation are proposed for clustering the biomedical documents. Fuzzy c-means (FCM) clustering algorithm is used to cluster the documents. The performances of the proposed methods are analyzed with traditional term based clustering for PubMed articles in five different diseases communities. The experimental results show that the proposed methods outperform the term based fuzzy clustering.

Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling

The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.

A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process

The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys. The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restreint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.

Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy

High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200oC. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200oC. Tensile strength of cast 310S stainless steel was 9 MPa at 1200oC, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900oC. Elongation also increased with temperature decreased. Microstructure observation revealed that s phase was precipitated along the grain boundary and within the matrix over 1200oC, which is detrimental to high temperature elongation.

Experimental Studies of Spiral-Confined HSCFST Columns under Uni-Axial Compression

Concrete-filled-steel-tube (CFST) columns are becoming increasingly popular owing to the superior behavior contributed by the composite action. However, this composite action cannot be fully developed because of different dilation properties between steel tube and concrete. During initial compression, there will be de-bonding between the constitutive materials. As a result, the strength, initial stiffness and ductility of CFST columns reduce significantly. To resolve this problem, external confinement in the form of spirals is proposed to improve the interface bonding. In this paper, a total of 14CFST columns with high-strength as well as ultra-high-strength concrete in-filled were fabricated and tested under uni-axial compression. From the experimental results, it can be concluded that the proposed spirals can improve the strength, initial stiffness, ductility and the interface bonding condition of CFST columns by restraining the lateral expansion of steel tube and core concrete. Moreover, the failure modes of confined core concrete change due to the strong confinement provided by spirals.

Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable

This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the crosslinked polyethylene (XLPE) in the presence of the applied electric field.

Solving Stochastic Eigenvalue Problem of Wick Type

In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Itô chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition method using the Wiener-Itô chaos expansion. Once the approximation of the solution is performed using the finite element method for example, the statistics of the numerical solution can be easily evaluated.

Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy

High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.

Characteristics of Hydraulic Jump

The effect of an abruptly expanding channel on the main characteristics of hydraulic jump is considered experimentally. The present study was made for supercritical flow of Froude number varying between 2 to 9 and approach to expanded channel width ratios 0.4, 0.5, 0.6 and 0.8. Physical explanations of the variation of these characteristics under varying flow conditions are discussed based on the observation drawn from experimental results. The analytical equation for the sequent depth ratio in an abruptly expanding channel as given by eminent hydraulic engineers are verified well with the experimental data for all expansion ratios, and the empirical relation was also verified with the present experimental data.

Inflation and Unemployment Rates as Indicators of the Transition European Union Countries Monetary Policy Orientation

Numerous studies carried out in the developed  western democratic countries have shown that the ideological  framework of the governing party has a significant influence on the  monetary policy. The executive authority consisting of a left-wing  party gives a higher weight to unemployment suppression and central  bank implements a more expansionary monetary policy. On the other  hand, right-wing governing party considers the monetary stability to  be more important than unemployment suppression and in such a  political framework the main macroeconomic objective becomes the  inflation rate reduction. The political framework conditions in the  transition countries which are new European Union (EU) members  are still highly specific in relation to the other EU member countries.  In the focus of this paper is the question whether the same  monetary policy principles are valid in these transitional countries as  well as they apply in developed western democratic EU member  countries. The data base consists of inflation rate and unemployment  rate for 11 transitional EU member countries covering the period  from 2001 to 2012. The essential information for each of these 11  countries and for each year of the observed period is right or left  political orientation of the ruling party.  In this paper we use t-statistics to test our hypothesis that there are  differences in inflation and unemployment between right and left  political orientation of the governing party. To explore the influence  of different countries, through years and different political  orientations descriptive statistics is used. Inflation and unemployment  should be strongly negatively correlated through time, which is tested  using Pearson correlation coefficient.  Regarding the fact whether the governing authority is consisted  from left or right politically oriented parties, monetary authorities  will adjust its policy setting the higher priority on lower inflation or  unemployment reduction. 

Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle

Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.