Influence of Chemical Treatment on Elastic Properties of the Band Cotton Crepe 100%

The manufacturing technology of band cotton is very delicate and depends to choice of certain parameters such as torsion of warp yarn. The fabric elasticity is achieved without the use of any elastic material, chemical expansion, artificial or synthetic and it’s capable of creating pressures useful for therapeutic treatments. Before use, the band is subjected to treatments of specific preparation for obtaining certain elasticity, however, during its treatment, there are some regression parameters. The dependence of manufacturing parameters on the quality of the chemical treatment was confirmed. The aim of this work is to improve the properties of the fabric through the development of manufacturing technology appropriately. Finally for the treatment of the strip pancake 100% cotton, a treatment method is recommended.

Theoretical Density Study of Winding Yarns on Spool

The aim of work is to define the distribution density of winding yarn on cylindrical and conical bobbins. It is known that parallel winding gives greater density and more regular distribution, but the unwinding of yarn is much more difficult for following process. The conical spool has an enormous advantage during unwinding and may contain a large amount of yarns, but the density distribution is not regular because of difference in diameters. The variation of specific density over the reel height is explained generally by the sudden change of winding speed due to direction movement variation of yarn. We determined the conditions of uniform winding and developed a calculate model to the change of the specific density of winding wire over entire spool height.

Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks

The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25mm to 1.60mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.

Effect of Adding Sawdust on Mechanical- Physical Properties of Ceramic Bricks to Obtain Lightweight Building Material

This paper studies the application of a variety of sawdust materials in the production of lightweight insulating bricks. First, the mineralogical and chemical composition of clays was determined. Next, ceramic bricks were fabricated with different quantities of materials (3–6 and 9 wt. % for sawdust, 65 wt. % for grey clay, 24–27 and 30 wt. % for yellow clay and 2 wt% of tuff). These bricks were fired at 800 and 950 °C. The effect of adding this sawdust on the technological behaviour of the brick was assessed by drying and firing shrinkage, water absorption, porosity, bulk density and compressive strength. The results have shown that the optimum sintering temperature is 950 °C. Below this temperature, at 950 °C, increased open porosity was observed, which decreased the compressive strength of the bricks. Based on the results obtained, the optimum amounts of waste were 9 wt. % sawdust of eucalyptus, 24 wt. % shaping moisture and 1.6 particle size diameter. These percentages produced bricks whose mechanical properties were suitable for use as secondary raw materials in ceramic brick production.

Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers

The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb. The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.