A Consistency Protocol Multi-Layer for Replicas Management in Large Scale Systems

Large scale systems such as computational Grid is a distributed computing infrastructure that can provide globally available network resources. The evolution of information processing systems in Data Grid is characterized by a strong decentralization of data in several fields whose objective is to ensure the availability and the reliability of the data in the reason to provide a fault tolerance and scalability, which cannot be possible only with the use of the techniques of replication. Unfortunately the use of these techniques has a height cost, because it is necessary to maintain consistency between the distributed data. Nevertheless, to agree to live with certain imperfections can improve the performance of the system by improving competition. In this paper, we propose a multi-layer protocol combining the pessimistic and optimistic approaches conceived for the data consistency maintenance in large scale systems. Our approach is based on a hierarchical representation model with tree layers, whose objective is with double vocation, because it initially makes it possible to reduce response times compared to completely pessimistic approach and it the second time to improve the quality of service compared to an optimistic approach.

Evaluating Content Based Image Retrieval Techniques with the One Million Images CLIC Test Bed

Pattern recognition and image recognition methods are commonly developed and tested using testbeds, which contain known responses to a query set. Until now, testbeds available for image analysis and content-based image retrieval (CBIR) have been scarce and small-scale. Here we present the one million images CEA-List Image Collection (CLIC) testbed that we have produced, and report on our use of this testbed to evaluate image analysis merging techniques. This testbed will soon be made publicly available through the EU MUSCLE Network of Excellence.

Development of a Kinetic Model for the Photodegradation of 4-Chlorophenol using a XeBr Excilamp

Excilamps are new UV sources with great potential for application in wastewater treatment. In the present work, a XeBr excilamp emitting radiation at 283 nm has been used for the photodegradation of 4-chlorophenol within a range of concentrations from 50 to 500 mg L-1. Total removal of 4-chlorophenol was achieved for all concentrations assayed. The two main photoproduct intermediates formed along the photodegradation process, benzoquinone and hydroquinone, although not being completely removed, remain at very low residual concentrations. Such concentrations are insignificant compared to the 4-chlorophenol initial ones and non-toxic. In order to simulate the process and scaleup, a kinetic model has been developed and validated from the experimental data.

Flexible, Adaptable and Scaleable Business Rules Management System for Data Validation

The policies governing the business of any organization are well reflected in her business rules. The business rules are implemented by data validation techniques, coded during the software development process. Any change in business policies results in change in the code written for data validation used to enforce the business policies. Implementing the change in business rules without changing the code is the objective of this paper. The proposed approach enables users to create rule sets at run time once the software has been developed. The newly defined rule sets by end users are associated with the data variables for which the validation is required. The proposed approach facilitates the users to define business rules using all the comparison operators and Boolean operators. Multithreading is used to validate the data entered by end user against the business rules applied. The evaluation of the data is performed by a newly created thread using an enhanced form of the RPN (Reverse Polish Notation) algorithm.

Assessing Land Cover Change Trajectories in Olomouc, Czech Republic

Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socioeconomic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment.

Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network

In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.

A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections

In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.

Interactions between Cells and Nanoscale Surfaces of Oxidized Silicon Substrates

The importance for manipulating an incorporated scaffold and directing cell behaviors is well appreciated for tissue engineering. Here, we developed newly nano-topographic oxidized silicon nanosponges capable of being various chemical modifications to provide much insight into the fundamental biology of how cells interact with their surrounding environment in vitro. A wet etching technique is exerted to allow us fabricated the silicon nanosponges in a high-throughput manner. Furthermore, various organo-silane chemicals enabled self-assembled on the surfaces by vapor deposition. We have found that Chinese hamster ovary (CHO) cells displayed certain distinguishable morphogenesis, adherent responses, and biochemical properties while cultured on these chemical modified nano-topographic structures in compared with the planar oxidized silicon counterparts, indicating that cell behaviors can be influenced by certain physical characteristic derived from nano-topography in addition to the hydrophobicity of contact surfaces crucial for cell adhesion and spreading. Of particular, there were predominant nano-actin punches and slender protrusions formed while cells were cultured on the nano-topographic structures. This study shed potential applications of these nano-topographic biomaterials for controlling cell development in tissue engineering or basic cell biology research.

Application of Ti/RuO2-SnO2-Sb2O5 Anode for Degradation of Reactive Black-5 Dye

Electrochemical-oxidation of Reactive Black-5 (RB- 5) was conducted for degradation using DSA type Ti/RuO2-SnO2- Sb2O5 electrode. In the study, for electro-oxidation, electrode was indigenously fabricated in laboratory using titanium as substrate. This substrate was coated using different metal oxides RuO2, Sb2O5 and SnO2 by thermal decomposition method. Laboratory scale batch reactor was used for degradation and decolorization studies at pH 2, 7 and 11. Current density (50mA/cm2) and distance between electrodes (8mm) were kept constant for all experiments. Under identical conditions, removal of color, COD and TOC at initial pH 2 was 99.40%, 55% and 37% respectively for initial concentration of 100 mg/L RB-5. Surface morphology and composition of the fabricated electrode coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) respectively. Coating microstructure was analyzed by X-ray diffraction (XRD). Results of this study further revealed that almost 90% of oxidation occurred within 5-10 minutes.

A New Color Image Database for Benchmarking of Automatic Face Detection and Human Skin Segmentation Techniques

This paper presents a new color face image database for benchmarking of automatic face detection algorithms and human skin segmentation techniques. It is named the VT-AAST image database, and is divided into four parts. Part one is a set of 286 color photographs that include a total of 1027 faces in the original format given by our digital cameras, offering a wide range of difference in orientation, pose, environment, illumination, facial expression and race. Part two contains the same set in a different file format. The third part is a set of corresponding image files that contain human colored skin regions resulting from a manual segmentation procedure. The fourth part of the database has the same regions converted into grayscale. The database is available on-line for noncommercial use. In this paper, descriptions of the database development, organization, format as well as information needed for benchmarking of algorithms are depicted in detail.

Family-size Biogas Plant Using Manure and Urine Mixture at Ambient Temperature in Semi-arid Regions of Northwestern China

Biogas, a clean renewable energy, is attracting a growing concern of researchers and professionals in many fields. Based on the natural and climatic conditions in semi-arid regions of northwestern China, the present study introduces a specifically-designed family-size biogas plant (with a digester of 10m3) with manure and urine of animals and humanity as raw materials. The biogas plant is applicable to areas with altitudes of more than 2000 meters in northwestern China. In addition to the installation cost, a little operational expenditure, structure, characteristics, benefits of this small-scale biogas plant, this article introduces a wide range of specific popularization methods such as training, financial support, guided tour to the biogas plant, community-based group study and delivery of operational manuals. The feasibility of the biogas plant is explored on the basis of the availability of the raw materials. Simple operations contained in the current work increase the possibility of the wide use of this small-scale biogas plant in similar regions of the world.

An Experimental Helicopter Wind Envelope for Ship Operations

Launch and recovery helicopter wind envelope for a ship type was determined as the first step to the helicopter qualification program. Flight deck velocities data were obtained by means of a two components laser Doppler anemometer testing a 1/50th model in the wind tunnel stream. Full-scale flight deck measurements were obtained on board the ship using a sonic anemometer. Wind tunnel and full-scale measurements were compared, showing good agreement and finally, a preliminary launch and recovery helicopter wind envelope for this specific ship was built.

Analysis of CNT Bundle and its Comparison with Copper for FPGAs Interconnects

Each new semiconductor technology node brings smaller transistors and wires. Although this makes transistors faster, wires get slower. In nano-scale regime, the standard copper (Cu) interconnect will become a major hurdle for FPGA interconnect due to their high resistivity and electromigration. This paper presents the comprehensive evaluation of mixed CNT bundle interconnects and investigates their prospects as energy efficient and high speed interconnect for future FPGA routing architecture. All HSPICE simulations are carried out at operating frequency of 1GHz and it is found that mixed CNT bundle implemented in FPGAs as interconnect can potentially provide a substantial delay and energy reduction over traditional interconnects at 32nm process technology.

Prospective Class Teachers- Computer Experiences and Computer Attitudes

The main purpose of the research is to investigate the computer experiences and computer attitudes of prospective class teachers. The research also investigated the differences between computer attitudes and computer experiences, computer competencies and the influence of genders. Ninety prospective class teachers participated in the research. Computer Attitude Scale- Marmara (CAS-M), and a questionnaire, about their computer experiences, and opinions toward the use of computers in the classroom setting, were administrated. The major findings are as follows: (1) 62% of prospective class teachers have computer at home; (2) 50% of the computer owners have computers less than three years; (3) No significant differences were found between computer attitudes and gender; (4) Differences were found between general computer attitudes and computer liking attitudes of prospective class teachers based on their computer competencies in favor of more competent ones.

A DCT-Based Secure JPEG Image Authentication Scheme

The challenge in the case of image authentication is that in many cases images need to be subjected to non malicious operations like compression, so the authentication techniques need to be compression tolerant. In this paper we propose an image authentication system that is tolerant to JPEG lossy compression operations. A scheme for JPEG grey scale images is proposed based on a data embedding method that is based on a secret key and a secret mapping vector in the frequency domain. An encrypted feature vector extracted from the image DCT coefficients, is embedded redundantly, and invisibly in the marked image. On the receiver side, the feature vector from the received image is derived again and compared against the extracted watermark to verify the image authenticity. The proposed scheme is robust against JPEG compression up to a maximum compression of approximately 80%,, but sensitive to malicious attacks such as cutting and pasting.

Identification of Impact of Electromagnetic Fields at Low and High Frequency on Human Body

The article reviews the current state of large-scale studies about the impact of electromagnetic field on natural environment. The scenario of investigations – simulation of natural conditions at the workplace, taking into consideration the influence both low and high frequency electromagnetic fields is shown.The biological effects of low and high frequency electromagnetic fields are below presented. Results of investigation with animals are shown. The norms and regulations concerning the levels of electromagnetic field intensity are reviewed.

Design of Electromagnetic Drive Module for Micro-gyroscope

For micro-gyroscopes, the angular rate detection components have to oscillate forwards and backwards alternatively. An innovative design of micro-electromagnetic drive module is proposed to make a Π-type disc reciprocally and efficiently rotate within a certain of angular interval. Twelve Electromagnetic poles enclosing the thin disc are designed to provide the magnetic drive power. Isotropic etching technique is employed to fabricate the high-aspect-ratio trench, so that the contact angle of wire against trench can be increased and the potential defect of cavities and pores within the wire can be prevented. On the other hand, a Π-type thin disc is designed to conduct the pitch motion as an angular excitation, in addition to spinning, is exerted on the gyroscope. The efficacy of the micro-magnetic drive module is verified by the commercial software, Ansoft Maxewll. In comparison with the conventional planar windings in micro-scale systems, the magnetic drive force is increased by 150%.

Intelligibility of Cued Speech in Video

This paper discusses the cued speech recognition methods in videoconference. Cued speech is a specific gesture language that is used for communication between deaf people. We define the criteria for sentence intelligibility according to answers of testing subjects (deaf people). In our tests we use 30 sample videos coded by H.264 codec with various bit-rates and various speed of cued speech. Additionally, we define the criteria for consonant sign recognizability in single-handed finger alphabet (dactyl) analogically to acoustics. We use another 12 sample videos coded by H.264 codec with various bit-rates in four different video formats. To interpret the results we apply the standard scale for subjective video quality evaluation and the percentual evaluation of intelligibility as in acoustics. From the results we construct the minimum coded bit-rate recommendations for every spatial resolution.

A New Heuristic Approach for the Large-Scale Generalized Assignment Problem

This paper presents a heuristic approach to solve the Generalized Assignment Problem (GAP) which is NP-hard. It is worth mentioning that many researches used to develop algorithms for identifying the redundant constraints and variables in linear programming model. Some of the algorithms are presented using intercept matrix of the constraints to identify redundant constraints and variables prior to the start of the solution process. Here a new heuristic approach based on the dominance property of the intercept matrix to find optimal or near optimal solution of the GAP is proposed. In this heuristic, redundant variables of the GAP are identified by applying the dominance property of the intercept matrix repeatedly. This heuristic approach is tested for 90 benchmark problems of sizes upto 4000, taken from OR-library and the results are compared with optimum solutions. Computational complexity is proved to be O(mn2) of solving GAP using this approach. The performance of our heuristic is compared with the best state-ofthe- art heuristic algorithms with respect to both the quality of the solutions. The encouraging results especially for relatively large size test problems indicate that this heuristic approach can successfully be used for finding good solutions for highly constrained NP-hard problems.

Pilot-scale Study of Horizontal Anaerobic Digester for Biogas Production using Food Waste

A horizontal anaerobic digester was developed and tested in pilot scale for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal digester. A mixer of the horizontal digester was designed to easily remove the sediment in the bottom and scum layers on surface in the digester. Experimental result for 120 days of operation of the pilot plant showed a high removal efficiency of 81.2% for organic substance and high stability during the whole operation period were acquired. Also food waste was treated at high organic loading rates over 4 kg•VS/m3∙day and a methane gas production rate of 0.62 m3/kg•VSremoved was accomplished. The biological desulfurization equipment inside the horizontal digester was proven to be an economic and effective method to reduce the biogas desulfurization cost by removing hydrogen sulfide more than 90% without external desulfurization equipments.