Effects of Market Share and Diversification on Nonlife Insurers- Performance

The aim of this paper is to investigate the influence of market share and diversification on the nonlife insurers- performance. The underlying relationships have been investigated in different industries and different disciplines (economics, management...), still, no consistency exists either in the magnitude or statistical significance of the relationship between market share (and diversification as well) on one side and companies- performance on the other side. Moreover, the direction of the relationship is also somewhat questionable. While some authors find this relationship to be positive, the others reveal its negative association. In order to test the influence of market share and diversification on companies- performance in Croatian nonlife insurance industry for the period from 1999 to 2009, we designed an empirical model in which we included the following independent variables: firms- profitability from previous years, market share, diversification and control variables (i.e. ownership, industrial concentration, GDP per capita, inflation). Using the two-step generalized method of moments (GMM) estimator we found evidence of a positive and statistically significant influence of both, market share and diversification, on insurers- profitability.

Real-Time Visual Simulation and Interactive Animation of Shadow Play Puppets Using OpenGL

This paper describes a method of modeling to model shadow play puppet using sophisticated computer graphics techniques available in OpenGL in order to allow interactive play in real-time environment as well as producing realistic animation. This paper proposes a novel real-time method is proposed for modeling of puppet and its shadow image that allows interactive play of virtual shadow play using texture mapping and blending techniques. Special effects such as lighting and blurring effects for virtual shadow play environment are also developed. Moreover, the use of geometric transformations and hierarchical modeling facilitates interaction among the different parts of the puppet during animation. Based on the experiments and the survey that were carried out, the respondents involved are very satisfied with the outcomes of these techniques.

Explicit Delay and Power Estimation Method for CMOS Inverter Driving on-Chip RLC Interconnect Load

The resistive-inductive-capacitive behavior of long interconnects which are driven by CMOS gates are presented in this paper. The analysis is based on the ¤Ç-model of a RLC load and is developed for submicron devices. Accurate and analytical expressions for the output load voltage, the propagation delay and the short circuit power dissipation have been proposed after solving a system of differential equations which accurately describe the behavior of the circuit. The effect of coupling capacitance between input and output and the short circuit current on these performance parameters are also incorporated in the proposed model. The estimated proposed delay and short circuit power dissipation are in very good agreement with the SPICE simulation with average relative error less than 6%.

Prediction of Natural Gas Viscosity using Artificial Neural Network Approach

Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.

Optimal Control Strategies for Speed Control of Permanent-Magnet Synchronous Motor Drives

The permanent magnet synchronous motor (PMSM) is very useful in many applications. Vector control of PMSM is popular kind of its control. In this paper, at first an optimal vector control for PMSM is designed and then results are compared with conventional vector control. Then, it is assumed that the measurements are noisy and linear quadratic Gaussian (LQG) methodology is used to filter the noises. The results of noisy optimal vector control and filtered optimal vector control are compared to each other. Nonlinearity of PMSM and existence of inverter in its control circuit caused that the system is nonlinear and time-variant. With deriving average model, the system is changed to nonlinear time-invariant and then the nonlinear system is converted to linear system by linearization of model around average values. This model is used to optimize vector control then two optimal vector controls are compared to each other. Simulation results show that the performance and robustness to noise of the control system has been highly improved.

Web Based Real Time Laboratory Applications of Analog and Digital Communication Courses with Lab VIEW Access

Developments in scientific and technical area cause to use new methods and techniques in education, as is the case in all fields. Especially, the internet contributes a variety of new methods to design virtual and real time laboratory applications in education. In this study, a real time virtual laboratory is designed and implemented for analog and digital communications laboratory experiments by using Lab VIEW program for Marmara University Electronics-Communication Department. In this application, students can access the virtual laboratory web site and perform their experiments without any limitation of time and location so as the students can observe the signals by changing the parameters of the experiment and evaluate the results.

Assessing the Function of Light and Colorin Architectural View

Light is one of the most important qualitative and symbolic factors and has a special position in architecture and urban development in regard to practical function. The main function of light, either natural or artificial, is lighting up the environment and the constructional forms which is called lighting. However, light is used to redefine the urban spaces by architectural genius with regard to three aesthetic, conceptual and symbolic factors. In architecture and urban development, light has a function beyond lighting up the environment, and the designers consider it as one of the basic components. The present research aims at studying the function of light and color in architectural view and their effects in buildings.

Production of As Isotopes in the Interaction of natGe with 14-30 MeV Protons

Cross sections of As radionuclides in the interaction of natGe with 14-30 MeV protons have been deduced by off-line y-ray spectroscopy to find optimal reaction channels leading to radiotracers for positron emission tomography. The experimental results were compared with the previous results and those estimated by the compound nucleus reaction model.

A Complexity Measure for Java Bean based Software Components

The traditional software product and process metrics are neither suitable nor sufficient in measuring the complexity of software components, which ultimately is necessary for quality and productivity improvement within organizations adopting CBSE. Researchers have proposed a wide range of complexity metrics for software systems. However, these metrics are not sufficient for components and component-based system and are restricted to the module-oriented systems and object-oriented systems. In this proposed study it is proposed to find the complexity of the JavaBean Software Components as a reflection of its quality and the component can be adopted accordingly to make it more reusable. The proposed metric involves only the design issues of the component and does not consider the packaging and the deployment complexity. In this way, the software components could be kept in certain limit which in turn help in enhancing the quality and productivity.

Fire Spread Simulation Tool for Cruise Vessels

In 2002 an amendment to SOLAS opened for lightweight material constructions in vessels if the same fire safety as in steel constructions could be obtained. FISPAT (FIreSPread Analysis Tool) is a computer application that simulates fire spread and fault injection in cruise vessels and identifies fire sensitive areas. It was developed to analyze cruise vessel designs and provides a method to evaluate network layout and safety of cruise vessels. It allows fast, reliable and deterministic exhaustive simulations and presents the result in a graphical vessel model. By performing the analysis iteratively while altering the cruise vessel design it can be used along with fire chamber experiments to show that the lightweight design can be as safe as a steel construction and that SOLAS regulations are fulfilled.

Mechanical Characteristics of Spaghetti Enriched with Whole Soy Flour

The influence of full-fat soy flour (FFSF) and extrusion conditions on the mechanical characteristics of dry spaghetti were evaluated. Process was performed with screw speed of 10-40rpm and water circulating temperature of 35-70°C. Data analysis using mixture design showed that this enrichment resulted in significant differences in mechanical strength.

Marketing Strategy Analysis of Thai Asia Pacific Brewery Company

The study was a case study analysis about Thai Asia Pacific Brewery Company. The purpose was to analyze the company’s marketing objective, marketing strategy at company level, and marketing mix before liquor liberalization in 2000. Methods used in this study were qualitative and descriptive research approach which demonstrated the following results of the study demonstrated as follows: (1) Marketing objective was to increase market share of Heineken and Amtel, (2) the company’s marketing strategies were brand building strategy and distribution strategy. Additionally, the company also conducted marketing mix strategy as follows. Product strategy: The company added more beer brands namely Amstel and Tiger to provide additional choice to consumers, product and marketing research, and product development. Price strategy: the company had taken the following into consideration: cost, competitor, market, economic situation and tax. Promotion strategy: the company conducted sales promotion and advertising. Distribution strategy: the company extended channels its channels of distribution into food shops, pubs and various entertainment places. This strategy benefited interested persons and people who were engaged in the beer business.

Geometry Design Supported by Minimizing and Visualizing Collision in Dynamic Packing

This paper presents a method to support dynamic packing in cases when no collision-free path can be found. The method, which is primarily based on path planning and shrinking of geometries, suggests a minimal geometry design change that results in a collision-free assembly path. A supplementing approach to optimize geometry design change with respect to redesign cost is described. Supporting this dynamic packing method, a new method to shrink geometry based on vertex translation, interweaved with retriangulation, is suggested. The shrinking method requires neither tetrahedralization nor calculation of medial axis and it preserves the topology of the geometry, i.e. holes are neither lost nor introduced. The proposed methods are successfully applied on industrial geometries.

Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA

In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.

Potential of Energy Conservation of Daylight Linked Lighting System in India

Demand of energy is increasing faster than the generation. It leads shortage of power in all sectors of society. At peak hours this shortage is higher. Unless we utilize energy efficient technology, it is very difficult to minimize the shortage of energy. So energy efficiency program and energy conservation has an important role. Energy efficient technologies are cost intensive hence it is always not possible to implement in country like India. In the recent study, an educational building with operating hours from 10:00 a.m. to 05:00 p.m. has been selected to quantify the possibility of lighting energy conservation. As the operating hour is in daytime, integration of daylight with artificial lighting system will definitely reduce the lighting energy consumption. Moreover the initial investment has been given priority and hence the existing lighting installation was unaltered. An automatic controller has been designed which will be operated as a function of daylight through windows and the lighting system of the room will function accordingly. The result of the study of integrating daylight gave quite satisfactory for visual comfort as well as energy conservation.

Derivative Spectrophotometry Applied to the Determination of Triprolidine Hydrochloride and Pseudoephedrine Hydrochloride in Tablets and Dissolution Testing

A spectrophotometric method was developed for simultaneous quantification of pseudoephedrine hydrochloride (PSE) triprolidine hydrochloride (TRI) using second derivative method (zero-crossing technique). The second derivative amplitudes of PSE and TRI were measured at 271 and 321 nm, respectively. The calibration curves were linear in the range of 200 to 1,000 g/ml for PSE and 10 to 50 g/ml for TRI. The method was validated for specificity, accuracy, precision, limit of detection and limit of quantitation. The proposed method was applied to the assaying and dissolution of PSE and TRI in commercial tablets without any chemical separation. The results were compared with those obtained by the official USP31 method and statistical tests showed that there is no significant between the methods at 95% confidence level. The proposed method is simple, rapid and suitable for the routine quality control application. KeywordsTriprolidine, Pseudoephedrine, Derivative spectrophotometry, Dissolution testing.

Assessing the Effects of Explosion Waves on Office and Residential Buildings

Explosions may cause intensive damage to buildings and sometimes lead to total and progressive destruction. Pressures induced by explosions are one of the most destructive loads a structure may experience. While designing structures for great explosions may be expensive and impractical, engineers are looking for methods for preventing destructions resulted from explosions. A favorable structural system is a system which does not disrupt totally due to local explosion, since such structures sustain less loss in comparison with structural ones which really bear the load and suddenly disrupt. Designing and establishing vital and necessary installations in a way that it is resistant against direct hit of bomb and rocket is not practical, economical, or expedient in many cases, because the cost of construction and installation with such specifications is several times more than the total cost of the related equipment.

Model of Continuous Cheese Whey Fermentation by Candida Pseudotropicalis

The utilization of cheese whey as a fermentation substrate to produce bio-ethanol is an effort to supply bio-ethanol demand as a renewable energy. Like other process systems, modeling is also required for fermentation process design, optimization and plant operation. This research aims to study the fermentation process of cheese whey by applying mathematics and fundamental concept in chemical engineering, and to investigate the characteristic of the cheese whey fermentation process. Steady state simulation results for inlet substrate concentration of 50, 100 and 150 g/l, and various values of hydraulic retention time, showed that the ethanol productivity maximum values were 0.1091, 0.3163 and 0.5639 g/l.h respectively. Those values were achieved at hydraulic retention time of 20 hours, which was the minimum value used in this modeling. This showed that operating reactor at low hydraulic retention time was favorable. Model of bio-ethanol production from cheese whey will enhance the understanding of what really happen in the fermentation process.

Decolourization of Melanoidin Containing Wastewater Using South African Coal Fly Ash

Batch adsorption of recalcitrant melanoidin using the abundantly available coal fly ash was carried out. It had low specific surface area (SBET) of 1.7287 m2/g and pore volume of 0.002245 cm3/g while qualitative evaluation of the predominant phases in it was done by XRD analysis. Colour removal efficiency was found to be dependent on various factors studied. Maximum colour removal was achieved around pH 6, whereas increasing sorbent mass from 10g/L to 200 g/L enhanced colour reduction from 25% to 86% at 298 K. Spontaneity of the process was suggested by negative Gibbs free energy while positive values for enthalpy change showed endothermic nature of the process. Non-linear optimization of error functions resulted in Freundlich and Redlich-Peterson isotherms describing sorption equilibrium data best. The coal fly ash had maximum sorption capacity of 53 mg/g and could thus be used as a low cost adsorbent in melanoidin removal.

OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System

This paper presents Genetic Algorithm (GA) based approach for the allocation of FACTS (Flexible AC Transmission System) devices for the improvement of Power transfer capacity in an interconnected Power System. The GA based approach is applied on IEEE 30 BUS System. The system is reactively loaded starting from base to 200% of base load. FACTS devices are installed in the different locations of the power system and system performance is noticed with and without FACTS devices. First, the locations, where the FACTS devices to be placed is determined by calculating active and reactive power flows in the lines. Genetic Algorithm is then applied to find the amount of magnitudes of the FACTS devices. This approach of GA based placement of FACTS devices is tremendous beneficial both in terms of performance and economy is clearly observed from the result obtained.