Retrospective Synthetic Focusing with Correlation Weighting for Very High Frame Rate Ultrasound

The need of high frame-rate imaging has been triggered by the new applications of ultrasound imaging to transient elastography and real-time 3D ultrasound. Using plane wave excitation (PWE) is one of the methods to achieve very high frame-rate imaging since an image can be formed with a single insonification. However, due to the lack of transmit focusing, the image quality with PWE is lower compared with those using conventional focused transmission. To solve this problem, we propose a filter-retrieved transmit focusing (FRF) technique combined with cross-correlation weighting (FRF+CC weighting) for high frame-rate imaging with PWE. A restrospective focusing filter is designed to simultaneously minimize the predefined sidelobe energy associated with single PWE and the filter energy related to the signal-to-noise-ratio (SNR). This filter attempts to maintain the mainlobe signals and to reduce the sidelobe ones, which gives similar mainlobe signals and different sidelobes between the original PWE and the FRF baseband data. Normalized cross-correlation coefficient at zero lag is calculated to quantify the degree of similarity at each imaging point and used as a weighting matrix to the FRF baseband data to further suppress sidelobes, thus improving the filter-retrieved focusing quality.

Heat Transfer Modeling in Multi-Layer Cookware using Finite Element Method

The high temperature degree and uniform Temperature Distribution (TD) on surface of cookware which contact with food are effective factors for improving cookware application. Additionally, the ability of pan material in retaining the heat and nonreactivity with foods are other significant properties. It is difficult for single material to meet a wide variety of demands such as superior thermal and chemical properties. Multi-Layer Plate (MLP) makes more regular TD. In this study the main objectives are to find the best structure (single or multi-layer) and materials to provide maximum temperature degree and uniform TD up side surface of pan. And also heat retaining of used metals with goal of improving the thermal quality of pan to economize the energy. To achieve this aim were employed Finite Element Method (FEM) for analyzing transient thermal behavior of applied materials. The analysis has been extended for different metals, we achieved the best temperature profile and heat retaining in Copper/ Stainless Steel MLP.

Multiple Positive Periodic Solutions to a Periodic Predator-Prey-Chain Model with Harvesting Terms

In this paper, a class of predator-prey-chain model with harvesting terms are studied. By using Mawhin-s continuation theorem of coincidence degree theory and some skills of inequalities, some sufficient conditions are established for the existence of eight positive periodic solutions. Finally, an example is presented to illustrate the feasibility and effectiveness of the results.

Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network

Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.

Intelligent Speaker Verification based Biometric System for Electronic Commerce Applications

Electronic commerce is growing rapidly with on-line sales already heading for hundreds of billion dollars per year. Due to the huge amount of money transferred everyday, an increased security level is required. In this work we present the architecture of an intelligent speaker verification system, which is able to accurately verify the registered users of an e-commerce service using only their voices as an input. According to the proposed architecture, a transaction-based e-commerce application should be complemented by a biometric server where customer-s unique set of speech models (voiceprint) is stored. The verification procedure requests from the user to pronounce a personalized sequence of digits and after capturing speech and extracting voice features at the client side are sent back to the biometric server. The biometric server uses pattern recognition to decide whether the received features match the stored voiceprint of the customer who claims to be, and accordingly grants verification. The proposed architecture can provide e-commerce applications with a higher degree of certainty regarding the identity of a customer, and prevent impostors to execute fraudulent transactions.

A New Similarity Measure on Intuitionistic Fuzzy Sets

Intuitionistic fuzzy sets as proposed by Atanassov, have gained much attention from past and latter researchers for applications in various fields. Similarity measures between intuitionistic fuzzy sets were developed afterwards. However, it does not cater the conflicting behavior of each element evaluated. We therefore made some modification to the similarity measure of IFS by considering conflicting concept to the model. In this paper, we concentrate on Zhang and Fu-s similarity measures for IFSs and some examples are given to validate these similarity measures. A simple modification to Zhang and Fu-s similarity measures of IFSs was proposed to find the best result according to the use of degree of indeterminacy. Finally, we mark up with the application to real decision making problems.

Hybrid Recommender Systems using Social Network Analysis

This study proposes novel hybrid social network analysis and collaborative filtering approach to enhance the performance of recommender systems. The proposed model selects subgroups of users in Internet community through social network analysis (SNA), and then performs clustering analysis using the information about subgroups. Finally, it makes recommendations using cluster-indexing CF based on the clustering results. This study tries to use the cores in subgroups as an initial seed for a conventional clustering algorithm. This model chooses five cores which have the highest value of degree centrality from SNA, and then performs clustering analysis by using the cores as initial centroids (cluster centers). Then, the model amplifies the impact of friends in social network in the process of cluster-indexing CF.

A Novel Methodology Proposed for Optimizing the Degree of Hybridization in Parallel HEVs using Genetic Algorithm

In this paper, a new Genetic Algorithm (GA) based methodology is proposed to optimize the Degree of Hybridization (DOH) in a passenger parallel hybrid car. At first step, target parameters for the vehicle are decided and then using ADvanced VehIcle SimulatOR (ADVISOR) software, the variation pattern of these target parameters, across the different DOHs, is extracted. At the next step, a suitable cost function is defined and is optimized using GA. In this paper, also a new technique has been proposed for deciding the number of battery modules for each DOH, which leads to a great improvement in the vehicle performance. The proposed methodology is so simple, fast and at the same time, so efficient.

Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations

We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numerical results which shows that the cGP(k) and dG(k)- methods are accurate of order k +1, respectively, in the whole time interval. Moreover, the cGP(k)-method is superconvergent of order 2k and dG(k)-method is of order 2k +1 at the discrete time points. Furthermore, the dependence of the results on the choice of the stabilization parameter are discussed and compared.

The Use of Project to Enhance Writing Skill

This paper explores the use of project work in a content-based instruction in a Rajabhat University, a teacher college, where student teachers are instructed to perform teaching roles mainly in basic education level. Its aim is to link theory to practice, and to help language teachers maximize the full potential of project work for genuine communication and give real meaning to writing activity. Two research questions are formulated to guide this study: a) What is the academic achievement of the students- writing skill against the 70% attainment target after the use of project to enhance the skill? and b) To what degree is the development of the students- writing skills during the course of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of achievement test, student writing works, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students- record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students- ability to attend to, recognize, and focus on meaningful patterns of language forms.

Orthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection

The density estimates considered in this paper comprise a base density and an adjustment component consisting of a linear combination of orthogonal polynomials. It is shown that, in the context of density approximation, the coefficients of the linear combination can be determined either from a moment-matching technique or a weighted least-squares approach. A kernel representation of the corresponding density estimates is obtained. Additionally, two refinements of the Kronmal-Tarter stopping criterion are proposed for determining the degree of the polynomial adjustment. By way of illustration, the density estimation methodology advocated herein is applied to two data sets.

Application of Particle Swarm Optimization Technique for an Optical Fiber Alignment System

In this paper, a new alignment method based on the particle swarm optimization (PSO) technique is presented. The PSO algorithm is used for locating the optimal coupling position with the highest optical power with three-degrees of freedom alignment. This algorithm gives an interesting results without a need to go thru the complex mathematical modeling of the alignment system. The proposed algorithm is validated considering practical tests considering the alignment of two Single Mode Fibers (SMF) and the alignment of SMF and PCF fibers.

Existence of Periodic Solutions in a Food Chain Model with Holling–type II Functional Response

In this paper, a food chain model with Holling type II functional response on time scales is investigated. By using the Mawhin-s continuation theorem in coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained.

Efficient Hardware Implementation of an Elliptic Curve Cryptographic Processor Over GF (2 163)

A new and highly efficient architecture for elliptic curve scalar point multiplication which is optimized for a binary field recommended by NIST and is well-suited for elliptic curve cryptographic (ECC) applications is presented. To achieve the maximum architectural and timing improvements we have reorganized and reordered the critical path of the Lopez-Dahab scalar point multiplication architecture such that logic structures are implemented in parallel and operations in the critical path are diverted to noncritical paths. With G=41, the proposed design is capable of performing a field multiplication over the extension field with degree 163 in 11.92 s with the maximum achievable frequency of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the chip area is occupied, where G is the digit size of the underlying digit-serial finite field multiplier.

Effects of Operating Conditions on Calcium Carbonate Fouling in a Plate Heat Exchanger

The aim of this work is to investigate on the internalflow patterns in a plate heat exchanger channel, which affect the rate of sedimentation fouling on the heat transfer surface of the plate heat exchanger. The research methodologies were the computer simulation using Computational Fluid Dynamics (CFD) and the experimental works. COMSOL MULTIPHYSICS™ Version 3.3 was used to simulate the velocity flow fields to verify the low and high flow regions. The results from the CFD technique were then compared with the images obtained from the experiments in which the fouling test rig was set up with a singlechannel plate heat exchanger to monitor the fouling of calcium carbonate. Two parameters were varied i.e., the crossing angle of the two plate: 55/55, 10/10, and 55/10 degree, and the fluid flow rate at the inlet: 0.0566, 0.1132 and 0.1698 m/s. The type of plate “GX-12" (the surface area 0.12 m2, the depth 2.9 mm, the width of fluid flow 215 mm and the thickness of stainless plate of 0.5 mm) was used in this study. The results indicated that the velocity distribution for the case of 55/55 degree seems to be very well organized when compared with the others. Also, an increase in the inlet velocity resulted in the reduction of fouling rate on the surface of plate heat exchangers.

Transient Stability Assessment Using Fuzzy SVM and Modified Preventive Control

Transient Stability is an important issue in power systems planning, operation and extension. The objective of transient stability analysis problem is not satisfied with mere transient instability detection or evaluation and it is most important to complement it by defining fast and efficient control measures in order to ensure system security. This paper presents a new Fuzzy Support Vector Machines (FSVM) to investigate the stability status of power systems and a modified generation rescheduling scheme to bring back the identified unstable cases to a more economical and stable operating point. FSVM improves the traditional SVM (Support Vector Machines) by adding fuzzy membership to each training sample to indicate the degree of membership of this sample to different classes. The preventive control based on economic generator rescheduling avoids the instability of the power systems with minimum change in operating cost under disturbed conditions. Numerical results on the New England 39 bus test system show the effectiveness of the proposed method.

Stress Analysis of Non-persistent Rock Joints under Biaxial Loading

Two-dimensional finite element model was created in this work to investigate the stresses distribution within rock-like samples with offset open non-persistent joints under biaxial loading. The results of this study have explained the fracture mechanisms observed in tests on rock-like material with open non-persistent offset joints [1]. Finite element code SAP2000 was used to study the stresses distribution within the specimens. Four-nodded isoperimetric plain strain element with two degree of freedom per node, and the three-nodded constant strain triangular element with two degree of freedom per node were used in the present study.The results of the present study explained the formation of wing cracks at the tip of the joints for low confining stress as well as the formation of wing cracks at the middle of the joint for the higher confining stress. High shear stresses found in the numerical study at the tip of the joints explained the formation of secondary cracks at the tip of the joints in the experimental study. The study results coincide with the experimental observations which showed that for bridge inclination of 0o, the coalescence occurred due to shear failure and for bridge inclination of 90o the coalescence occurred due to tensile failure while for the other bridge inclinations coalescence occurred due to mixed tensile and shear failure.

Evaluation of Linear and Geometrically Nonlinear Static and Dynamic Analysis of Thin Shells by Flat Shell Finite Elements

The choice of finite element to use in order to predict nonlinear static or dynamic response of complex structures becomes an important factor. Then, the main goal of this research work is to focus a study on the effect of the in-plane rotational degrees of freedom in linear and geometrically non linear static and dynamic analysis of thin shell structures by flat shell finite elements. In this purpose: First, simple triangular and quadrilateral flat shell finite elements are implemented in an incremental formulation based on the updated lagrangian corotational description for geometrically nonlinear analysis. The triangular element is a combination of DKT and CST elements, while the quadrilateral is a combination of DKQ and the bilinear quadrilateral membrane element. In both elements, the sixth degree of freedom is handled via introducing fictitious stiffness. Secondly, in the same code, the sixth degrees of freedom in these elements is handled differently where the in-plane rotational d.o.f is considered as an effective d.o.f in the in-plane filed interpolation. Our goal is to compare resulting shell elements. Third, the analysis is enlarged to dynamic linear analysis by direct integration using Newmark-s implicit method. Finally, the linear dynamic analysis is extended to geometrically nonlinear dynamic analysis where Newmark-s method is used to integrate equations of motion and the Newton-Raphson method is employed for iterating within each time step increment until equilibrium is achieved. The obtained results demonstrate the effectiveness and robustness of the interpolation of the in-plane rotational d.o.f. and present deficiencies of using fictitious stiffness in dynamic linear and nonlinear analysis.

A Development of Home Service Robot using Omni-Wheeled Mobility and Task-Based Manipulation

In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 3 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.

Chaos Theory and Application in Foreign Exchange Rates vs. IRR (Iranian Rial)

Daily production of information and importance of the sequence of produced data in forecasting future performance of market causes analysis of data behavior to become a problem of analyzing time series. But time series that are very complicated, usually are random and as a result their changes considered being unpredictable. While these series might be products of a deterministic dynamical and nonlinear process (chaotic) and as a result be predictable. Point of Chaotic theory view, complicated systems have only chaotically face and as a result they seem to be unregulated and random, but it is possible that they abide by a specified math formula. In this article, with regard to test of strange attractor and biggest Lyapunov exponent probability of chaos on several foreign exchange rates vs. IRR (Iranian Rial) has been investigated. Results show that data in this market have complex chaotic behavior with big degree of freedom.