Abstract: A common approach in resisting lateral forces is the use of reinforced concrete shear walls in buildings. These walls represent the main elements to resist the lateral forces due to their large strength and stiffness. However, such walls may contain many openings due to functional requirements, and this may largely affect the overall lateral stiffness of them. It is thus of prime importance to quantify the effect of openings on the dynamic performance of the shear walls. SAP2000 structural analysis program is used as a main source after verifying the results. This study is made by using linear elastic analysis. The results are compared to ASCE7-16 code empirical equations for estimating the fundamental period of shear wall structures. Finally, statistical regression is used to fit an equation for estimating the increase in the fundamental period of shear-walled regular structures due to windows openings in the walls.
Abstract: The vast majority of the Middle East countries are prone to earthquakes. Despite that and from a seismic hazard point of view, the higher values of the superimposed dead load intensity of partitions and wearing materials of the constructed reinforced concrete slabs in these countries can increase the earthquake vulnerability of the structures. The primary objective of this paper is to investigate the effect of reducing superimposed dead load on the lateral seismic deformations of structures, the inter-story drifts and the seismic pounding damages. The study utilizes a group of three reinforced concrete structures at three different site conditions. These structures are assumed to be constructed in Nablus city of Palestine, and having superimposed dead load value as 1 kN/m2, 3 kN/m2, and 5 kN/m2, respectively. SAP2000 program, Version 18.1.1, is used to perform the response spectrum analysis to obtain the potential lateral seismic deformations of the studied models. Amazingly, the study points that, at the same site, superimposed dead load has a minor effect on the lateral deflections of the models. This, however, promotes the hypothesis that buildings failed during earthquakes mainly because they were not designed appropriately against gravity loads.
Abstract: This paper presents a numerical investigation on the seismic performance of a benchmark bridge with different optimal isolation systems under near fault ground motion. Usually, very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. Hence, near-fault ground motions are most likely to affect either structures with long natural period range like isolated structures or structures sensitive to velocity content such as viscously damped structures. The work is aimed at analyzing the seismic performance of a three-span continuous bridge designed with different isolation systems having different levels of damping. The case study was analyzed in different configurations including: (a) simply supported, (b) isolated with lead rubber bearings (LRBs), (c) isolated with rubber isolators and 10% classical damping (HDLRBs), and (d) isolated with rubber isolators and 70% supplemental damping ratio. Case (d) represents an alternative control strategy that combines the effect of seismic isolation with additional supplemental damping trying to take advantages from both solutions. The bridge is modeled in SAP2000 and solved by time history direct-integration analyses under a set of six recorded near-fault ground motions. In addition to this, a set of analysis under Italian code provided seismic action is also conducted, in order to evaluate the effectiveness of the suggested optimal control strategies under far field seismic action. Results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution for both mitigation of displacement demand at the isolation level and base shear reduction in the piers also in case of near fault ground motion.
Abstract: Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.
Abstract: A 15-storey RC building, studied in this paper, is
representative of modern building type constructed in Madina City in
Saudi Arabia before 10 years ago. These buildings are almost
consisting of reinforced concrete skeleton i.e. columns, beams and
flat slab as well as shear walls in the stairs and elevator areas
arranged in the way to have a resistance system for lateral loads
(wind – earthquake loads). In this study, the dynamic properties of
the 15-storey RC building were identified using ambient motions
recorded at several, spatially-distributed locations within each
building. Three dimensional pushover analysis (Nonlinear static
analysis) was carried out using SAP2000 software incorporating
inelastic material properties for concrete, infill and steel. The effect
of modeling the building with and without infill walls, on the
performance point as well as capacity and demand spectra due to EQ
design spectrum function in Madina area has been investigated. ATC-
40 capacity and demand spectra are utilized to get the modification
factor (R) for the studied building. The purpose of this analysis is to
evaluate the expected performance of structural systems by
estimating, strength and deformation demands in design, and
comparing these demands to available capacities at the performance
levels of interest. The results are summarized and discussed.
Abstract: One of the main purposes of designing bucklingrestrained
braces is the fact that the entire lateral load is wasted by
the braces, the entire gravitational load is moved to the foundation
through the beams, and the columns can be moved to the foundation.
In other words, braces are designed for bearing lateral load. In the
implementation of the structure, it should be noted that the
implementation of various parts of the structure must be conducted in
such a way that the buckling-restrained braces would not bear the
gravitational load. Moreover, this type of brace has been investigated
under impact loading, and the design goals of designing method
(direct motion) are controlled under impact loading. The results of
dynamic analysis are shown as the relocation charts of the floors and
switch between the floors. Finally, the results are compared with each
other.
Abstract: An existing RC building in Madinah is seismically
evaluated with and without infill wall. Four model systems have been
considered i.e. model I (no infill), model IIA (strut infill-update from
field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut
infill-Soft storey- ASCE/SEI 41). Three dimensional pushover
analyses have been carried out using SAP2000 software
incorporating inelastic material behavior for concrete, steel and infill
walls. Infill wall has been modeled as equivalent strut according to
suggested equation matching field test measurements and to the
ASCE/SEI 41 equation. The effect of building modeling on the
performance point as well as capacity and demand spectra due to EQ
design spectrum function in Madinah area has been investigated. The
response modification factor (R) for the 5 story RC building is
evaluated from capacity and demand spectra (ATC-40) for the
studied models. The results are summarized and discussed.
Abstract: In this paper first, Two buildings have been modeled
and then analyzed using nonlinear static analysis method under two
different conditions in Nonlinear SAP 2000 software. In the first
condition the interaction of soil adjacent to the walls of basement are
ignored while in the second case this interaction have been modeled
using Gap elements of nonlinear SAP2000 software. Finally,
comparing the results of two models, the effects of soil-structure on
period, target point displacement, internal forces, shape deformations
and base shears have been studied. According to the results, this
interaction has always increased the base shear of buildings,
decreased the period of structure and target point displacement, and
often decreased the internal forces and displacements.
Abstract: This paper presents nonlinear elastic dynamic analysis
of 3-D semi-rigid steel frames including geometric and connection
nonlinearities. The geometric nonlinearity is considered by using
stability functions and updating geometric stiffness matrix. The
nonlinear behavior of the steel beam-to-column connection is
considered by using a zero-length independent connection element
comprising of six translational and rotational springs. The nonlinear
dynamic equilibrium equations are solved by the Newmark numerical
integration method. The nonlinear time-history analysis results are
compared with those of previous studies and commercial SAP2000
software to verify the accuracy and efficiency of the proposed
procedure.
Abstract: Stick models are widely used in studying the
behaviour of straight as well as skew bridges and viaducts subjected
to earthquakes while carrying out preliminary studies. The
application of such models to highly curved bridges continues to
pose challenging problems. A viaduct proposed in the foothills of the
Himalayas in Northern India is chosen for the study. It is having 8
simply supported spans @ 30 m c/c. It is doubly curved in horizontal
plane with 20 m radius. It is inclined in vertical plane as well. The
superstructure consists of a box section. Three models have been
used: a conventional stick model, an improved stick model and a 3D
finite element model. The improved stick model is employed by
making use of body constraints in order to study its capabilities. The
first 8 frequencies are about 9.71% away in the latter two models.
Later the difference increases to 80% in 50th mode. The viaduct was
subjected to all three components of the El Centro earthquake of May
1940. The numerical integration was carried out using the Hilber-
Hughes-Taylor method as implemented in SAP2000. Axial forces
and moments in the bridge piers as well as lateral displacements at
the bearing levels are compared for the three models. The maximum
difference in the axial forces and bending moments and
displacements vary by 25% between the improved and finite element
model. Whereas, the maximum difference in the axial forces,
moments, and displacements in various sections vary by 35%
between the improved stick model and equivalent straight stick
model. The difference for torsional moment was as high as 75%. It is
concluded that the stick model with body constraints to model the
bearings and expansion joints is not desirable in very sharp S curved
viaducts even for preliminary analysis. This model can be used only
to determine first 10 frequency and mode shapes but not for member
forces. A 3D finite element analysis must be carried out for
meaningful results.
Abstract: Two-dimensional finite element model was created in this work to investigate the stresses distribution within rock-like samples with offset open non-persistent joints under biaxial loading. The results of this study have explained the fracture mechanisms observed in tests on rock-like material with open non-persistent offset joints [1]. Finite element code SAP2000 was used to study the stresses distribution within the specimens. Four-nodded isoperimetric plain strain element with two degree of freedom per node, and the three-nodded constant strain triangular element with two degree of freedom per node were used in the present study.The results of the present study explained the formation of wing cracks at the tip of the joints for low confining stress as well as the formation of wing cracks at the middle of the joint for the higher confining stress. High shear stresses found in the numerical study at the tip of the joints explained the formation of secondary cracks at the tip of the joints in the experimental study. The study results coincide with the experimental observations which showed that for bridge inclination of 0o, the coalescence occurred due to shear failure and for bridge inclination of 90o the coalescence occurred due to tensile failure while for the other bridge inclinations coalescence occurred due to mixed tensile and shear failure.