Post Elevated Temperature Effect on the Strength and Microstructure of Thin High Performance Cementitious Composites (THPCC)

Reinforced Concrete (RC) structures strengthened with fiber reinforced polymer (FRP) lack in thermal resistance under elevated temperatures in the event of fire. This phenomenon led to the lining of strengthened concrete with thin high performance cementitious composites (THPCC) to protect the substrate against elevated temperature. Elevated temperature effects on THPCC, based on different cementitious materials have been studied in the past but high-alumina cement (HAC)-based THPCC have not been well characterized. This research study will focus on the THPCC based on HAC replaced by 60%, 70%, 80% and 85% of ground granulated blast furnace slag (GGBS). Samples were evaluated by the measurement of their mechanical strength (28 & 56 days of curing) after exposed to 400°C, 600°C and 28°C of room temperature for comparison and corroborated by their microstructure study. Results showed that among all mixtures, the mix containing only HAC showed the highest compressive strength after exposed to 600°C as compared to other mixtures. However, the tensile strength of THPCC made of HAC and 60% GGBS content was comparable to the THPCC with HAC only after exposed to 600°C. Field emission scanning electron microscopy (FESEM) images of THPCC accompanying Energy Dispersive X-ray (EDX) microanalysis revealed that the microstructure deteriorated considerably after exposure to elevated temperatures which led to the decrease in mechanical strength.

Study of Peptide Fragment of Alpha-Fetoprotein as a Radionuclide Vehicle

Alpfa-fetoprotein and its fragments may be an important vehicle for targeted delivery of radionuclides to the tumor. We investigated the effect of conditions on the labeling of biologically active synthetic peptide based on the (F-afp) with technetium-99m. The influence of the nature of the buffer solution, pH, concentration of reductant, concentration of the peptide and the reaction temperature on the yield of labeling was examined. As a result, the following optimal conditions for labeling of (F-afp) are found: pH 8.5 (phosphate and bicarbonate buffers) and pH from 1.7 to 7.0 (citrate buffer). The reaction proceeds with sufficient yield at room temperature for 30 min at the concentration of SnCl2 and (Fafp) (F-afp) is to be less than 10 mkg/ml and 25 mkg/ml, respectively. Investigations of the test drug accumulation in the tumor cells of human breast cancer were carried out. Results can be assumed that the in vivo study of the (F-afp) in experimental tumor lesions will show concentrations sufficient for imaging these lesions by SPECT.

Noninvasive, Wireless Textronic System to Breath Frequency Measurement

In this paper authors presented the research of textile electroconductive materials, which can be used to construction sensory textronic shirt to breath frequency measurement. The full paper also will present results of measurements carried out on unique measurement stands.

Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches

As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.

Technological Forecasting on Phytotherapics Development in Brazil

The prospective analysis is presented as an important tool to identify the most relevant opportunities and needs in research and development from planned interventions in innovation systems. This study chose Phyllanthus niruri, known as "stone break" to describe the knowledge about the specie, by using biotechnological forecasting through the software Vantage Point. It can be seen a considerable increase in studies on Phyllanthus niruri in recent years and that there are patents about this plant since twenty-five years ago. India was the country that most carried out research on the specie, showing interest, mainly in studies of hepatoprotection, antioxidant and anti-cancer activities. Brazil is in the second place, with special interest for anti-tumor studies. Given the identification of the Brazilian groups that exploit the species it is possible to mediate partnerships and cooperation aiming to help on the implementing of the Program of Herbal medicines (phytotherapics) in Brazil.

Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions

In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.

Surface Roughness Optimization in End Milling Operation with Damper Inserted End Milling Cutters

This paper presents a study of the Taguchi design application to optimize surface quality in damper inserted end milling operation. Maintaining good surface quality usually involves additional manufacturing cost or loss of productivity. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various factors, using fewer resources than a factorial design. This Study included spindle speed, feed rate, and depth of cut as control factors, usage of different tools in the same specification, which introduced tool condition and dimensional variability. An orthogonal array of L9(3^4)was used; ANOVA analyses were carried out to identify the significant factors affecting surface roughness, and the optimal cutting combination was determined by seeking the best surface roughness (response) and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing milling parameters for surface roughness.

Demythologization of Female Smokers in Korean Films

Compare to western cultures, women who smoke in Korea are not tolerated. Korean people are prejudiced against women smoking. In spite of the relative prevalence of sexual equality in South Korea, women too often feel obliged to confine their smoking to only a few public spaces, such as designated smoking rooms, coffee shops or pubs. Korean Confucianism classifies people according to gender and social status. According to Confucian culture, cigarettes convey clear social meanings as well as reinforcing status, age and gender, beyond personal preferences. For these reasons, the significant of people smoking in Korea varies according to their gender. This study will determine reasons for the ongoing sexual discrimination against female Korean smokers thorough analyzing Korean films. Since film is a medium reflects social phenomenon. Roland Barthes- Mythology Theory will be used to analyze films.

An Analysis of Variation of Ceiling Height and Window Level for Studio Architecture in Malaysia

This paper investigated the impact of ceiling height and window head heights variation on daylighting inside architectural teaching studio with a full width window. In architectural education, using the studio is more than normal classroom in most credit hours. Therefore, window position, size and dimension of studio have direct influence on level of daylighting. Daylighting design is a critical factor that improves student learning, concentration and behavior, in addition to these, it also reduces energy consumption. The methodology of analysis involves using Radiance in IES software under overcast and cloudy sky in Malaysia. It has been established that presentation of daylighting of architecture studio can be enhanced by changing the ceiling heights and window level, because, different ceiling heights and window head heights can contribute to different range of daylight levels.

Authentication Analysis of the 802.11i Protocol

IEEE has designed 802.11i protocol to address the security issues in wireless local area networks. Formal analysis is important to ensure that the protocols work properly without having to resort to tedious testing and debugging which can only show the presence of errors, never their absence. In this paper, we present the formal verification of an abstract protocol model of 802.11i. We translate the 802.11i protocol into the Strand Space Model and then prove the authentication property of the resulting model using the Strand Space formalism. The intruder in our model is imbued with powerful capabilities and repercussions to possible attacks are evaluated. Our analysis proves that the authentication of 802.11i is not compromised in the presented model. We further demonstrate how changes in our model will yield a successful man-in-the-middle attack.

Finite Element Analysis of Thin Steel Plate Shear Walls

Steel plate shear walls (SPSWs) in buildings are known to be an effective means for resisting lateral forces. By using un-stiffened walls and allowing them to buckle, their energy absorption capacity will increase significantly due to the postbuckling capacity. The post-buckling tension field action of SPSWs can provide substantial strength, stiffness and ductility. This paper presents the Finite Element Analysis of low yield point (LYP) steel shear walls. In this shear wall system, the LYP steel plate is used for the steel panel and conventional structural steel is used for boundary frames. A series of nonlinear cyclic analyses were carried out to obtain the stiffness, strength, deformation capacity, and energy dissipation capacity of the LYP steel shear wall. The effect of widthto- thickness ratio of steel plate on buckling behavior, and energy dissipation capacities were studied. Good energy dissipation and deformation capacities were obtained for all models.

Exploring the Potential of Phase Change Memories as an Alternative to DRAM Technology

Scalability poses a severe threat to the existing DRAM technology. The capacitors that are used for storing and sensing charge in DRAM are generally not scaled beyond 42nm. This is because; the capacitors must be sufficiently large for reliable sensing and charge storage mechanism. This leaves DRAM memory scaling in jeopardy, as charge sensing and storage mechanisms become extremely difficult. In this paper we provide an overview of the potential and the possibilities of using Phase Change Memory (PCM) as an alternative for the existing DRAM technology. The main challenges that we encounter in using PCM are, the limited endurance, high access latencies, and higher dynamic energy consumption than that of the conventional DRAM. We then provide an overview of various methods, which can be employed to overcome these drawbacks. Hybrid memories involving both PCM and DRAM can be used, to achieve good tradeoffs in access latency and storage density. We conclude by presenting, the results of these methods that makes PCM a potential replacement for the current DRAM technology.

A Fast Replica Placement Methodology for Large-scale Distributed Computing Systems

Fine-grained data replication over the Internet allows duplication of frequently accessed data objects, as opposed to entire sites, to certain locations so as to improve the performance of largescale content distribution systems. In a distributed system, agents representing their sites try to maximize their own benefit since they are driven by different goals such as to minimize their communication costs, latency, etc. In this paper, we will use game theoretical techniques and in particular auctions to identify a bidding mechanism that encapsulates the selfishness of the agents, while having a controlling hand over them. In essence, the proposed game theory based mechanism is the study of what happens when independent agents act selfishly and how to control them to maximize the overall performance. A bidding mechanism asks how one can design systems so that agents- selfish behavior results in the desired system-wide goals. Experimental results reveal that this mechanism provides excellent solution quality, while maintaining fast execution time. The comparisons are recorded against some well known techniques such as greedy, branch and bound, game theoretical auctions and genetic algorithms.

A Method to Predict Hemorrhage Disease of Grass Carp Tends

Hemorrhage Disease of Grass Carp (HDGC) is a kind of commonly occurring illnesses in summer, and the extremely high death rate result in colossal losses to aquaculture. As the complex connections among each factor which influences aquiculture diseases, there-s no quit reasonable mathematical model to solve the problem at present.A BP neural network which with excellent nonlinear mapping coherence was adopted to establish mathematical model; Environmental factor, which can easily detected, such as breeding density, water temperature, pH and light intensity was set as the main analyzing object. 25 groups of experimental data were used for training and test, and the accuracy of using the model to predict the trend of HDGC was above 80%. It is demonstrated that BP neural network for predicating diseases in HDGC has a particularly objectivity and practicality, thus it can be spread to other aquiculture disease.

3D Numerical Simulation of Scouring around Bridge Piers (Case Study: Bridge 524 Crosses the Tanana River)

Due to the three- dimensional flow pattern interacting with bed material, the process of local scour around bridge piers is complex. Modeling 3D flow field and scour hole evolution around a bridge pier is more feasible nowadays because the computational cost and computational time have significantly decreased. In order to evaluate local flow and scouring around a bridge pier, a completely three-dimensional numerical model, SSIIM program, was used. The model solves 3-D Navier-Stokes equations and a bed load conservation equation. The model was applied to simulate local flow and scouring around a bridge pier in a large natural river with four piers. Computation for 1 day of flood condition was carried out to predict the maximum local scour depth. The results show that the SSIIM program can be used efficiently for simulating the scouring in natural rivers. The results also showed that among the various turbulence models, the k-ω model gives more reasonable results.

Mycorrhizal Fungi Influence on Physiological Growth Indices in Basil Induced by Phosphorus Fertilizer under Irrigation Deficit Conditions

This experiment was carried out to study the effect of AMF, drought stress and phosphorus on physiological growth indices of basil at Iran using by a split-plot design with three replications. The main-plot factor included: two levels of irrigation regimes (control=no drought stress and irrigation after 80 evaporation= drought stress condition) while the sub-plot factors included phosphorus (0, 35 and 70 kg/ha) and application and non-application of Glomus fasciculatum. The results showed that total dry matter (TDM), life area index (LAI), relative growth rate (RGR) and crop growth rate (CGR) were all highly significantly different among the phosphorus, whereas drought stress had effect of practical significance on TDM, LAI, RGR and CGR. The results also showed that the highest TDM, LAI, RGR and CGR were obtained from application of Glomus fasciculatum under no-drought condition.

A Renovated Cook's Distance Based On The Buckley-James Estimate In Censored Regression

There have been various methods created based on the regression ideas to resolve the problem of data set containing censored observations, i.e. the Buckley-James method, Miller-s method, Cox method, and Koul-Susarla-Van Ryzin estimators. Even though comparison studies show the Buckley-James method performs better than some other methods, it is still rarely used by researchers mainly because of the limited diagnostics analysis developed for the Buckley-James method thus far. Therefore, a diagnostic tool for the Buckley-James method is proposed in this paper. It is called the renovated Cook-s Distance, (RD* i ) and has been developed based on the Cook-s idea. The renovated Cook-s Distance (RD* i ) has advantages (depending on the analyst demand) over (i) the change in the fitted value for a single case, DFIT* i as it measures the influence of case i on all n fitted values Yˆ∗ (not just the fitted value for case i as DFIT* i) (ii) the change in the estimate of the coefficient when the ith case is deleted, DBETA* i since DBETA* i corresponds to the number of variables p so it is usually easier to look at a diagnostic measure such as RD* i since information from p variables can be considered simultaneously. Finally, an example using Stanford Heart Transplant data is provided to illustrate the proposed diagnostic tool.

Study on Specific Energy in Grinding of DRACs: A Response Surface Methodology Approach

In this study, the effects of machining parameters on specific energy during surface grinding of 6061Al-SiC35P composites are investigated. Vol% of SiC, feed and depth of cut were chosen as process variables. The power needed for the calculation of the specific energy is measured from the two watt meter method. Experiments are conducted using standard RSM design called Central composite design (CCD). A second order response surface model was developed for specific energy. The results identify the significant influence factors to minimize the specific energy. The confirmation results demonstrate the practicability and effectiveness of the proposed approach.

Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks

This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.

Increasing Profitability Supported by Innovative Methods and Designing Monitoring Software in Condition-Based Maintenance: A Case Study

In the present article, a new method has been developed to enhance the application of equipment monitoring, which in turn results in improving condition-based maintenance economic impact in an automobile parts manufacturing factory. This study also describes how an effective software with a simple database can be utilized to achieve cost-effective improvements in maintenance performance. The most important results of this project are indicated here: 1. 63% reduction in direct and indirect maintenance costs. 2. Creating a proper database to analyse failures. 3. Creating a method to control system performance and develop it to similar systems. 4. Designing a software to analyse database and consequently create technical knowledge to face unusual condition of the system. Moreover, the results of this study have shown that the concept and philosophy of maintenance has not been understood in most Iranian industries. Thus, more investment is strongly required to improve maintenance conditions.