High Optical Properties and Rectifying Behavior of ZnO (Nano and Microstructures)/Si Heterostructures

We investigated a modified thermal evaporation method in the growth process of ZnO nanowires. ZnO nanowires were fabricated on p-type silicon substrates without using a metal catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursor was used to grow the ZnO nanowires. The substrates were placed in different temperature zones, and ZnO nanowires with different diameters were obtained for the different substrate temperatures. In addition to the nanowires, ZnO microdiscs with different diameters were obtained on another substrate, which was placed at a lower temperature than the other substrates. The optical properties and crystalline quality of the ZnO nanowires and microdiscs were characterized by room temperature photoluminescence (PL) and Raman spectrometers. The PL and Raman studies demonstrated that the ZnO nanowires and microdiscs grown using such set-up had good crystallinity with excellent optical properties. Rectifying behavior of ZnO/Si heterostructures was characterized by a simple DC circuit.

Effect of Anoxia on Root Growth and Grain Yield of Wheat Cultivars

Waterlogging reduces shoot and root growth and final yield of wheat. Waterlogged sites have a combination of low slope, high rainfall, heavy texture and low permeability. This study was aimed the importance of waterlogging on root growth and wheat yield. In order to study the effects of different waterlogging duration (0, 10, 20 and 30 days) at growth stages (1-leaf stage, tillering stage and stem elongation stage) on root growth of wheat cultivars (Chamran, Vee/Nac and Yavaroos), one pot experiment was carried out. The experiment was a factorial according to a RCBD with three replications. Results showed that root dry weight and total root length in the anthesis and grain ripening stages and biological and grain yields were significantly different between cultivars, growth stages and waterlogging durations. Vee/Nac was found superior with respect to other cultivars. Susceptibility to waterlogging at different growth stages for cultivars was 1-leaf stage > tillering stage > stem elongation stage. Under waterlogging treatments, grain and biological yields, were decreased 44.5 and 39.8%, respectively. Root length and root dry weight were reduced 55.1 and 45.2%, respectively, too. In this experiment, decrease at root growth because of waterlogging reduced grain and biological yields. Based on the results, even short period (10 days) of waterlogging had unrecoverable effects on the root growth and grain yield of wheat.

Sewage Sludge Management in Egypt: Current Status and Perspectives towards a Sustainable Agricultural Use

The present disposal routes of sewage sludge represent a critical environmental issue in Egypt. Recently, there has been an increasing concern about sewage sludge management due to the environmental risks, which resulted from the fast expansion of wastewater treatment plants without equal attention in dealing with the produced sludge. This paper discusses the current situation of sewage sludge management in Egypt presenting a brief overview of the existing wastewater treatment plants, sludge production and characteristics as well as options of beneficial use and potential demand of sewage sludge under Egyptian conditions. The characteristics of sewage sludge are discussed considering the results of own sampling and analysis as well as previous studies. Furthermore, alternative treatment scenarios for sewage sludge, which have been recently developed in Egypt, are discussed and perspectives for a sustainable agricultural use are outlined.

Two Scenarios for Ultra-Light Overhead Conveyor System in Logistics Applications

Overhead conveyor systems are in use in many installations around the world, meeting the widest range of applications possible. Overhead conveyor systems are particularly preferred in automotive industry but also at post offices. Overhead conveyor systems must always be integrated with a logistical process by finding the best way for a cheaper material flow in order to guarantee precise and fast workflows. With their help, any transport can take place without wasting ground and space, without excessive company capacity, lost or damaged products, erroneous delivery, endless travels and without wasting time. Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. Crossings are realized by switches. Ultra-light overhead conveyor systems provide optimal material flow, which produces profit and saves time. This article introduces two new ultra-light overhead conveyor designs in logistics and explains their components. According to the explanation of the components, scenarios are created by means of their technical characteristics. The scenarios are visualized with the help of CAD software. After that, assumptions are made for application area. According to these assumptions scenarios are visualized. These scenarios help logistics companies achieve lower development costs as well as quicker market maturity.

Mathematical Modeling of the Influence of Hydrothermal Processes in the Water Reservoir

In this paper presents the mathematical model of hydrothermal processes in thermal power plant with different wind direction scenarios in the water reservoir, which is solved by the Navier - Stokes and temperature equations for an incompressible fluid in a stratified medium. Numerical algorithm based on the method of splitting by physical parameters. Three dimensional Poisson equation is solved with Fourier method by combination of tridiagonal matrix method (Thomas algorithm).

Study the Influence of Chemical Treatment on the Compositional Changes and Defect Structures of ZnS Thin Film

The effect of chemical treatment in CdCl2 on the compositional changes and defect structures of potentially useful ZnS solar cell thin films prepared by vacuum deposition method was studied using the complementary Rutherford backscattering (RBS) and Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various as deposited samples studied. After treatment, perturbation on the intensity is noted; mobile defect states and charge conversion and/or transfer between defect states are found.

A Context-Aware based Authorization System for Pervasive Grid Computing

This paper describes the authorization system architecture for Pervasive Grid environment. It discusses the characteristics of classical authorization system and requirements of the authorization system in pervasive grid environment as well. Based on our analysis of current systems and taking into account the main requirements of such pervasive environment, we propose new authorization system architecture as an extension of the existing grid authorization mechanisms. This architecture not only supports user attributes but also context attributes which act as a key concept for context-awareness thought. The architecture allows authorization of users dynamically when there are changes in the pervasive grid environment. For this, we opt for hybrid authorization method that integrates push and pull mechanisms to combine the existing grid authorization attributes with dynamic context assertions. We will investigate the proposed architecture using a real testing environment that includes heterogeneous pervasive grid infrastructures mapped over multiple virtual organizations. Various scenarios are described in the last section of the article to strengthen the proposed mechanism with different facilities for the authorization procedure.

Architecting a Knowledge Theatre

This paper describes the architectural design considerations for building a new class of application, a Personal Knowledge Integrator and a particular example a Knowledge Theatre. It then supports this description by describing a scenario of a child acquiring knowledge and how this process could be augmented by the proposed architecture and design of a Knowledge Theatre. David Merrill-s first “principles of instruction" are kept in focus to provide a background to view the learning potential.

Endogenous Fantasy – Based Serious Games: Intrinsic Motivation and Learning

Current technological advances pale in comparison to the changes in social behaviors and 'sense of place' that is being empowered since the Internet made it on the scene. Today-s students view the Internet as both a source of entertainment and an educational tool. The development of virtual environments is a conceptual framework that needs to be addressed by educators and it is important that they become familiar with who these virtual learners are and how they are motivated to learn. Massively multiplayer online role playing games (MMORPGs), if well designed, could become the vehicle of choice to deliver learning content. We suggest that these games, in order to accomplish these goals, must begin with well-established instructional design principles that are co-aligned with established principles of video game design. And have the opportunity to provide an instructional model of significant prescriptive power. The authors believe that game designers need to take advantage of the natural motivation player-learners have for playing games by developing them in such a way so as to promote, intrinsic motivation, content learning, transfer of knowledge, and naturalization.

Bed Site Selection by Wild Boar (Sus scrofa) in Baghshadi Protected Area, Yazd Province, Iran

Populations of wild boar present in semi-arid of central Iran. We studied features influencing bed site selection by this species in semi-arid central steppe of Iran. Habitat features of the detected bed site were compared with randomly selected by quantifying number of habitat variables in semi- arid area in Iran. The results revealed that the most important influencing factors in bed site selection were vegetation cover, number of Artemisia sieberi, percentage cover and height of Acer cinerascens, percentage cover and height of Amygdalus scoparia. This is the first ecological study of the wild boar in a protected area of the semi desert biome of Iran. Sustainability of wild boar populations in this area dependent to shrubs of Amygdalus scoparia and Acer cinerascens for thermal and camouflage cover.

The Comparison of Data Replication in Distributed Systems

The necessity of ever-increasing use of distributed data in computer networks is obvious for all. One technique that is performed on the distributed data for increasing of efficiency and reliablity is data rplication. In this paper, after introducing this technique and its advantages, we will examine some dynamic data replication. We will examine their characteristies for some overus scenario and the we will propose some suggestion for their improvement.

Bayesian Network Based Intelligent Pediatric System

In this paper, a Bayesian Network (BN) based system is presented for providing clinical decision support to healthcare practitioners in rural or remote areas of India for young infants or children up to the age of 5 years. The government is unable to appoint child specialists in rural areas because of inadequate number of available pediatricians. It leads to a high Infant Mortality Rate (IMR). In such a scenario, Intelligent Pediatric System provides a realistic solution. The prototype of an intelligent system has been developed that involves a knowledge component called an Intelligent Pediatric Assistant (IPA); and User Agents (UA) along with their Graphical User Interfaces (GUI). The GUI of UA provides the interface to the healthcare practitioner for submitting sign-symptoms and displaying the expert opinion as suggested by IPA. Depending upon the observations, the IPA decides the diagnosis and the treatment plan. The UA and IPA form client-server architecture for knowledge sharing.

Experimental Study of Adsorption Properties of Acid and Thermal Treated Bentonite from Tehran (Iran)

The Iranian bentonite was first characterized by Scanning Electron Microscopy (SEM), Inductively Coupled Plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), X-ray Diffraction (XRD) and BET. The bentonite was then treated thermally between 150°C-250°C at 15min, 45min and 90min and also was activated chemically with different concentration of sulphuric acid (3N, 5N and 10N). Although the results of thermal activated-bentonite didn-t show any considerable changes in specific surface area and Cation Exchange Capacity (CEC), but the results of chemical treated bentonite demonstrated that such properties have been improved by acid activation process.

Evaluation of Antifungal Potential of Cenchrus pennisetiformis for the Management of Macrophomina phaseolina

Macrophomina phaseolina is a devastating soil-borne fungal plant pathogen that causes charcoal rot disease in many economically important crops worldwide. So far, no registered fungicide is available against this plant pathogen. This study was planned to examine the antifungal activity of an allelopathic grass Cenchrus pennisetiformis (Hochst. & Steud.) Wipff. for the management of M. phaseolina isolated from cowpea [Vigna unguiculata (L.) Walp.] plants suffering from charcoal rot disease. Different parts of the plants viz. inflorescence, shoot and root were extracted in methanol. Laboratory bioassays were carried out using different concentrations (0, 0.5, 1.0, …, 3.0 g mL-1) of methanolic extracts of the test allelopathic grass species to assess the antifungal activity against the pathogen. In general, extracts of all parts of the grass exhibited antifungal activity. All the concentrations of methanolic extracts of shoot and root significantly reduced fungal biomass by 20–73% and 40–80%, respectively. Methanolic shoot extract was fractionated using n-hexane, chloroform, ethyl acetate and n-butanol. Different concentrations of these fractions (3.125, 6.25, …, 200 mg mL-1) were analyzed for their antifungal activity. All the concentrations of n-hexane fraction significantly reduced fungal biomass by 15–96% over corresponding control treatments. Higher concentrations (12.5–200 mg mL-1) of chloroform, ethyl acetate and n-butanol also reduced the fungal biomass significantly by 29–100%, 46–100% and 24–100%, respectively.

Leaching Behaviour of a Low-grade South African Nickel Laterite

The morphology, mineralogical and chemical composition of a low-grade nickel ore from Mpumalanga, South Africa, were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF), respectively. The ore was subjected to atmospheric agitation leaching using sulphuric acid to investigate the effects of acid concentration, leaching temperature, leaching time and particle size on extraction of nickel and cobalt. Analyses results indicated the ore to be a saprolitic nickel laterite belonging to the serpentine group of minerals. Sulphuric acid was found to be able to extract nickel from the ore. Increased acid concentration and temperature only produced low amounts of nickel but improved cobalt extraction. As high as 77.44% Ni was achieved when leaching a -106+75μm fraction with 4.0M acid concentration at 25oC. The kinetics of nickel leaching from the saprolitic ore were studied and the activation energy was determined to be 18.16kJ/mol. This indicated that nickel leaching reaction was diffusion controlled.

A Bionic Approach to Dynamic, Multimodal Scene Perception and Interpretation in Buildings

Today, building automation is advancing from simple monitoring and control tasks of lightning and heating towards more and more complex applications that require a dynamic perception and interpretation of different scenes occurring in a building. Current approaches cannot handle these newly upcoming demands. In this article, a bionically inspired approach for multimodal, dynamic scene perception and interpretation is presented, which is based on neuroscientific and neuro-psychological research findings about the perceptual system of the human brain. This approach bases on data from diverse sensory modalities being processed in a so-called neuro-symbolic network. With its parallel structure and with its basic elements being information processing and storing units at the same time, a very efficient method for scene perception is provided overcoming the problems and bottlenecks of classical dynamic scene interpretation systems.

Scheduling a Flexible Flow Shops Problem using DEA

This paper considers a scheduling problem in flexible flow shops environment with the aim of minimizing two important criteria including makespan and cumulative tardiness of jobs. Since the proposed problem is known as an Np-hard problem in literature, we have to develop a meta-heuristic to solve it. We considered general structure of Genetic Algorithm (GA) and developed a new version of that based on Data Envelopment Analysis (DEA). Two objective functions assumed as two different inputs for each Decision Making Unit (DMU). In this paper we focused on efficiency score of DMUs and efficient frontier concept in DEA technique. After introducing the method we defined two different scenarios with considering two types of mutation operator. Also we provided an experimental design with some computational results to show the performance of algorithm. The results show that the algorithm implements in a reasonable time.

A Multi-Objective Model for Supply Chain Network Design under Stochastic Demand

In this article, the design of a Supply Chain Network (SCN) consisting of several suppliers, production plants, distribution centers and retailers, is considered. Demands of retailers are considered stochastic parameters, so we generate amounts of data via simulation to extract a few demand scenarios. Then a mixed integer two-stage programming model is developed to optimize simultaneously two objectives: (1) minimization the fixed and variable cost, (2) maximization the service level. A weighting method is utilized to solve this two objective problem and a numerical example is made to show the performance of the model.

A Universal Approach for the Intuitive Control of Mobile Robots using an AR/VR-based Interface

Mobile robots are used in a large field of scenarios, like exploring contaminated areas, repairing oil rigs under water, finding survivors in collapsed buildings, etc. Currently, there is no unified intuitive user interface (UI) to control such complex mobile robots. As a consequence, some scenarios are done without the exploitation of experience and intuition of human teleoperators. A novel framework has been developed to embed a flexible and modular UI into a complete 3-D virtual reality simulation system. This new approach wants to access maximum benefits of human operators. Sensor information received from the robot is prepared for an intuitive visualization. Virtual reality metaphors support the operator in his decisions. These metaphors are integrated into a real time stereo video stream. This approach is not restricted to any specific type of mobile robot and allows for the operation of different robot types with a consistent concept and user interface.

Optical Properties of Some A2BCl4 Type Chlorides

Efficient luminescence is reported for the first time in Eu2+ activated double Chlorides A2BCl4 (A=Alkali metal, B=Alkaline earth element). A simple wet-chemical preparation is described. Emission intensities are comparable to that of the commercial phosphor. Excitation covers near UV region. These phosphors may be useful for applications like solid state lighting, scintillation detectors and X-ray storage using photo-stimulable phosphors.