An Advanced Nelder Mead Simplex Method for Clustering of Gene Expression Data

The DNA microarray technology concurrently monitors the expression levels of thousands of genes during significant biological processes and across the related samples. The better understanding of functional genomics is obtained by extracting the patterns hidden in gene expression data. It is handled by clustering which reveals natural structures and identify interesting patterns in the underlying data. In the proposed work clustering gene expression data is done through an Advanced Nelder Mead (ANM) algorithm. Nelder Mead (NM) method is a method designed for optimization process. In Nelder Mead method, the vertices of a triangle are considered as the solutions. Many operations are performed on this triangle to obtain a better result. In the proposed work, the operations like reflection and expansion is eliminated and a new operation called spread-out is introduced. The spread-out operation will increase the global search area and thus provides a better result on optimization. The spread-out operation will give three points and the best among these three points will be used to replace the worst point. The experiment results are analyzed with optimization benchmark test functions and gene expression benchmark datasets. The results show that ANM outperforms NM in both benchmarks.

Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects

Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.

Some New Upper Bounds for the Spectral Radius of Iterative Matrices

In this paper, we present some new upper bounds for the spectral radius of iterative matrices based on the concept of doubly α diagonally dominant matrix. And subsequently, we give two examples to show that our results are better than the earlier ones.

Performance of a Power Generator System Using Crude Plant Oil Blend with Diesel Fuel

Under the variation of crude oil price and the impact of greenhouse effect, it is urgent to find a potential alternative fuel. Among these alternative fuels, non edible plant oils are the most potential ones, because they don-t have the problem of food and cropland competitions. Among the non-edible plant oils, Jatropha oil is the most potential one. Jatropha oil is non-eatable oil and has good oil quality and low temperature performance. It has potential to become one of the most competitive biomass crude oils. The crude plant oil will be blended with diesel fuel to be tested in a power generator. The international collaboration between Taiwan and Indonesia on the production of Jatropha in Indonesia will also be presented in this study.

A Dynamic Model of Air Pollution, Health,and Population Growth Using System Dynamics: A Study on Tehran-Iran (With Computer Simulation by the Software Vensim)

The significance of environmental protection is wellknown in today's world. The execution of any program depends on sufficient knowledge and required familiarity with environment and its pollutants. Taking advantage of a systematic method, as a new science, in environmental planning can solve many problems. In this article, air pollution in Tehran and its relationship with health and population growth have been analyzed using dynamic systems. Firstly, by using casual loops, the relationship between the parameters effective on air pollution in Tehran were taken into consideration, then these casual loops were turned into flow diagrams [6], and finally, they were simulated using the software Vensim [16]in order to conclude what the effect of each parameter will be on air pollution in Tehran in the next 10 years, how changing of one or more parameters influences other parameters, and which parameter among all other parameters requires to be controlled more.

Analyzing of Public Transport Trip Generation in Developing Countries; A Case Study in Yogyakarta, Indonesia

Yogyakarta, as the capital city of Yogyakarta Province, has important roles in various sectors that require good provision of public transportation system. Ideally, a good transportation system should be able to accommodate the amount of travel demand. This research attempts to develop a trip generation model to predict the number of public transport passenger in Yogyakarta city. The model is built by using multiple linear regression analysis, which establishes relationship between trip number and socioeconomic attributes. The data consist of primary and secondary data. Primary data was collected by conducting household surveys which randomly selected. The resulted model is further applied to evaluate the existing TransJogja, a new Bus Rapid Transit system serves Yogyakarta and surrounding cities, shelters.

Installation Stability of Low Temperature Steel Mesh in LNG Storage

To enhance installation security, a LNG storage in Rudong of Jiangsu province was adopted as a practical work, and it was analyzed by nonlinear finite element method to research overall and local stability performance, as well as the stress and deformation under the action of wind load and self-weight. Results indicate that deformation is tiny when steel mesh maintains as an overall ring, and stress caused by vertical bending moment and tension of bottom tie wire are also in the safe range. However, axial forces of lap reinforcement in adjacent steel mesh exceed the ultimate bearing capacity of tie wire. Hence, tie wires are ruptured; single mesh loses lateral connection and turns into monolithic status as the destruction of overall structure. Further more, monolithic steel mesh is led to collapse by the damage of bottom connection. So, in order to prevent connection failure and enhance installation security, the overlapping parts of steel mesh should be taken more reliable measures.

Applying Theory of Perceived Risk and Technology Acceptance Model in the Online Shopping Channel

As the advancement of technology, online shopping channel develops rapidly in recent years. According to the report of Taiwan Network Information Center, there are almost eighty percents of internet population shopping in online channel. Synthesizing insights from the previous research, this study develops the conceptual model to integrate Theory of Perceived Risk (TPR) and Technology Acceptance Model (TAM) to apply in online shopping. Using data collected from 637 respondents from online survey website, we use structural equation modeling to test measurement and structural models. The results suggest the need for consideration of perceived risk as an antecedent in the Technology Acceptance Model. The limitations and implications are discussed.

Fuzzy Control of Macroeconomic Models

The optimal control is one of the possible controllers for a dynamic system, having a linear quadratic regulator and using the Pontryagin-s principle or the dynamic programming method . Stochastic disturbances may affect the coefficients (multiplicative disturbances) or the equations (additive disturbances), provided that the shocks are not too great . Nevertheless, this approach encounters difficulties when uncertainties are very important or when the probability calculus is of no help with very imprecise data. The fuzzy logic contributes to a pragmatic solution of such a problem since it operates on fuzzy numbers. A fuzzy controller acts as an artificial decision maker that operates in a closed-loop system in real time. This contribution seeks to explore the tracking problem and control of dynamic macroeconomic models using a fuzzy learning algorithm. A two inputs - single output (TISO) fuzzy model is applied to the linear fluctuation model of Phillips and to the nonlinear growth model of Goodwin.

Optimization of Microwave-Assisted Extraction of Cherry Laurel (Prunus laurocerasus L.) Fruit Using Response Surface Methodology

Optimization of a microwave-assisted extraction of cherry laurel (Prunus laurocerasus) fruit using methanol was studied. The influence of process parameters (microwave power, plant material-to-solvent ratio and the extraction time) on the extraction efficiency were optimized by using response surface methodology. The predicted maximum yield of extractive substances (41.85 g/100 g fresh plant material) was obtained at microwave power of 600 W and plant material to solvent ratio of 0.2 g/cm3 after 26 minutes of extraction, while a mean value of 40.80±0.41 g/100 g fresh plant material was obtained from laboratory experiments. This proves applicability of the model in predicting optimal extraction conditions with minimal laborious and time consuming. The results indicated that all process parameters were effective on the extraction efficiency, while the most important factor was extraction time. In order to rationalize production the optimal economical condition which gave a large total extract yield with minimal energy and solvent consumption was found.

Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method

In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.

Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow

Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.

Sorption of Nickel by Hypnea Valentiae: Application of Response Surface Methodology

In this work, sorption of nickel from aqueous solution on hypnea valentiae, red macro algae, was investigated. Batch experiments have been carried out to find the effect of various parameters such as pH, temperature, sorbent dosage, metal concentration and contact time on the sorption of nickel using hypnea valentiae. Response surface methodology (RSM) is employed to optimize the process parameters. Based on the central composite design, quadratic model was developed to correlate the process variables to the response. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the sorption of nickel were found to be: pH – 5.1, temperature – 36.8oC, sorbent dosage – 5.1 g/L, metal concentration – 100 mg/L and contact time – 30 min. At these optimized conditions the maximum removal of nickel was found to be 91.97%. A coefficient of determination R2 value 0.9548 shows the fitness of response surface methodology in this work.

The Anti-Noise and Anti-Wear Systems for Railways

In recent years there has been a continuous increase of axle loads, tonnage, train speed and train length which has increased both the productivity in the rail sector and the risk of rail breaks and derailments. On the other hand, the environmental requirements (e.g. noise reduction) for railway operations will become tighter in the future. In our research we developed a new composite material which does not change braking properties, is capable of taking extremely high pressure loads, reduces noise and is environmentally friendly. Part of our research was also the development of technology which will be able to apply this material to the rail. The result of our research was the system which reduces the wear out significantly and almost completely eliminates the squealing noise at the same time, and by using only one special material.

Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process

Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.

Tag Broker Model for Protecting Privacy in RFID Environment

RFID system, in which we give identification number to each item and detect it with radio frequency, supports more variable service than barcode system can do. For example, a refrigerator with RFID reader and internet connection will automatically notify expiration of food validity to us. But, in spite of its convenience, RFID system has some security threats, because anybody can get ID information of item easily. One of most critical threats is privacy invasion. Existing privacy protection schemes or systems have been proposed, and these schemes or systems defend normal users from attempts that any attacker tries to get information using RFID tag value. But, these systems still have weakness that attacker can get information using analogous value instead of original tag value. In this paper, we mention this type of attack more precisely and suggest 'Tag Broker Model', which can defend it. Tag broker in this model translates original tag value to random value, and user can only get random value. Attacker can not use analogous tag value, because he/she is not able to know original one from it.

Calculating the Efficiency of Steam Boilers Based on Its Most Effecting Factors: A Case Study

This paper is concerned with calculating boiler efficiency as one of the most important types of performance measurements in any steam power plant. That has a key role in determining the overall effectiveness of the whole system within the power station. For this calculation, a Visual-Basic program was developed, and a steam power plant known as El-Khmus power plant, Libya was selected as a case study. The calculation of the boiler efficiency was applied by using heating balance method. The findings showed how the maximum heat energy which produced from the boiler increases the boiler efficiency through increasing the temperature of the feed water, and decreasing the exhaust temperature along with humidity levels of the of fuel used within the boiler.

Comparison between Haar and Daubechies Wavelet Transformations on FPGA Technology

Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the Bit Error Rate (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. From the BER, it is seen that the implementations execute the operation of the wavelet transform correctly and satisfying the perfect reconstruction conditions. The design procedure has been explained and designed using the stat-ofart Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.

A Study of the Problems and Demands of Community Leaders- Training in the Upper Northeastern Region

This research is aimed at studying the nature of problems and demands of the training for community leaders in the upper northeastern region of Thailand. Population and group samplings are based on 360 community leaders in the region who have experienced prior training from the Udonthani Rajabhat University. Stratified random samplings have been drawn upon 186 participants. The research tools is questionnaires. The frequency, percentage and standard deviation are employed in data analysis. The findings indicate that most of community leaders are males and senior adults. The problems in training are associated with the inconveniences of long-distance travelling to training locations, inadequacy of learning centers and training sites and high training costs. The demand of training is basically motivated by a desire for self-development in modern knowledge in keeping up-to-date with the changing world and the need for technological application and facilitation in shortening the distance to training locations and in limiting expensive training costs.

The Situation in the Public Procurement Market in Post-Communist Countries: The Case of the Czech Republic

Public procurement is one of the most important areas in the public sector that introduces a possibility for a corruption. Due to the volume of the funds that are allocated through this institution (in the EU countries it is between 10 – 15% of GDP), it has very serious implications for the efficiency of public expenditures and the overall economic efficiency as well. Indicators that are usually used for the measurement of the corruption (such as Corruption Perceptions Index - CPI) show that the worst situation is in the post-communist countries and Mediterranean countries. The presented paper uses the Czech Republic as an example of a post-communist country and analyses the factors which influence the scope of corruption in public procurement. Moreover, the paper discusses indicators that could point at the public procurement market inefficiency. The presented results show that post-communist states use the institute of public contracts significantly more than the old member countries of the continental Europe. It has a very important implication because it gives more space for corruption. Furthermore, it appears that the inefficient functioning of public procurement market is clearly manifested in the low number of bids, low level of market transparency and an ineffective control system. Some of the observed indicators are statistically significantly correlated with the CPI.