Railway Crane Accident: A Comparative Metallographic Test on Pins Fractured during Operation

Eventually train accidents occur on railways and for some specific cases it is necessary to use a train rescue with a crane positioned under a platform wagon. These tumbled machines are collected and sent to the machine shop or scrap yard. In one of these cranes that were being used to rescue a wagon, occurred a fall of hoist due to fracture of two large pins. The two pins were collected and sent for failure analysis. This work investigates the main cause and the secondary causes for the initiation of the fatigue crack. All standard failure analysis procedures were applied, with careful evaluation of the characteristics of the material, fractured surfaces and, mainly, metallographic tests using an optical microscope to compare the geometry of the peaks and valleys of the thread of the pins and their respective seats. By metallographic analysis, it was concluded that the fatigue cracks were started from a notch (stress concentration) in the valley of the threads of the pin applied to the right side of the crane (pin 1). In this, it was verified that the peaks of the threads of the pin seat did not have proper geometry, with sharp edges being present that caused such notches. The visual analysis showed that fracture of the pin on the left side of the crane (pin 2) was brittle type, being a consequence of the fracture of the first one. Recommendations for this and other railway cranes have been made, such as nondestructive testing, stress calculation, design review, quality control and suitability of the mechanical forming process of the seat threads and pin threads.

Rail Corridors between Minimal Use of Train and Unsystematic Tightening of Population: A Methodological Essay

In the current situation, the automobile has become the main means of locomotion. It allows traveling long distances, encouraging urban sprawl. To counteract this trend, the train is often proposed as an alternative to the car. Simultaneously, the favoring of urban development around public transport nodes such as railway stations is one of the main issues of the coordination between urban planning and transportation and the keystone of the sustainable urban development implementation. In this context, this paper focuses on the study of the spatial structuring dynamics around the railway. Specifically, it is a question of studying the demographic dynamics in rail corridors of Nantes, Angers and Le Mans (Western France) basing on the radiation of railway stations. Consequently, the methodology is concentrated on the knowledge of demographic weight and gains of these corridors, the index of urban intensity and the mobility behaviors (workers’ travels, scholars' travels, modal practices of travels). The perimeter considered to define the rail corridors includes the communes of urban area which have a railway station and communes with an access time to the railway station is less than fifteen minutes by car (time specified by the Regional Transport Scheme of Travelers). The main tools used are the statistical data from the census of population, the basis of detailed tables and databases on mobility flows. The study reveals that the population is not tightened along rail corridors and train use is minimal despite the presence of a nearby railway station. These results lead to propose guidelines to make the train, a real vector of mobility across the rail corridors.

Investigating the Dynamic Response of the Ballast

Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.

Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport

Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system “well to wheel”.

The Anti-Noise and Anti-Wear Systems for Railways

In recent years there has been a continuous increase of axle loads, tonnage, train speed and train length which has increased both the productivity in the rail sector and the risk of rail breaks and derailments. On the other hand, the environmental requirements (e.g. noise reduction) for railway operations will become tighter in the future. In our research we developed a new composite material which does not change braking properties, is capable of taking extremely high pressure loads, reduces noise and is environmentally friendly. Part of our research was also the development of technology which will be able to apply this material to the rail. The result of our research was the system which reduces the wear out significantly and almost completely eliminates the squealing noise at the same time, and by using only one special material.