Characterization of Catalagzi Fly Ash for Heavy Metal Adsorption

Fly ash is a significant waste that is released of thermal power plants and defined as very fine particles that are drifted upward with up taken by the flue gases due to the burning of used coal [1]. The fly-ash is capable of removing organic contaminants in consequence of high carbon content, a large surface area per unit volume and contained heavy metals. Therefore, fly ash is used as an effective coagulant and adsorbent by pelletization [2, 3]. In this study, the possibility of use of fly ash taken from Turkey like low-cost adsorbent for adsorption of zinc ions found in waste water was investigated. The fly ash taken from Turkey was pelletized with bentonite and molass to evaluate the adsorption capaticity. For this purpose; analyses such as sieve analysis, XRD, XRF, FTIR and SEM were performed. As a result, it was seen that pellets prepared from fly ash, bentonite and molass would be used for zinc adsorption.

Estimation of Production Function in Fishery on the Coasts of Caspian Sea

This research was conducted for the first time at the southeastern coasts of the Caspian Sea in order to evaluate the performance of osteichthyes cooperatives through production (catch) function. Using one of the indirect valuation methods in this research, contributory factors in catch were identified and were inserted into the function as independent variables. In order to carry out this research, the performance of 25 Osteichthyes catching cooperatives in the utilization year of 2009 which were involved in fishing in Miankale wildlife refuge region. The contributory factors in catch were divided into groups of economic, ecological and biological factors. In the mentioned function, catch rate of the cooperative were inserted into as the dependant variable and fourteen partial variables in terms of nine general variables as independent variables. Finally, after function estimation, seven variables were rendered significant at 99 percent reliably level. The results of the function estimation indicated that human resource (fisherman quantity) had the greatest positive effect on catch rate with an influence coefficient of 1.7 while weather conditions had the greatest negative effect on the catch rate of cooperatives with an influence coefficient of -2.07. Moreover, factors like member's share, experience and fisherman training and fishing effort played the main roles in the catch rate of cooperative with influence coefficients of 0.81, 0.5 and 0.21, respectively.

A Low Power High Frequency CMOS RF Four Quadrant Analog Mixer

This paper describes a CMOS four-quadrant multiplier intended for use in the front-end receiver by utilizing the square-law characteristic of the MOS transistor in the saturation region. The circuit is based on 0.35 um CMOS technology simulated using HSPICE software. The mixer has a third-order inter the power consumption is 271uW from a single 1.2V power supply. One of the features of the proposed design is using two MOS transistors limitation to reduce the supply voltage, which leads to reduce the power consumption. This technique provides a GHz bandwidth response and low power consumption.

High Performance Computing Using Out-of- Core Sparse Direct Solvers

In-core memory requirement is a bottleneck in solving large three dimensional Navier-Stokes finite element problem formulations using sparse direct solvers. Out-of-core solution strategy is a viable alternative to reduce the in-core memory requirements while solving large scale problems. This study evaluates the performance of various out-of-core sequential solvers based on multifrontal or supernodal techniques in the context of finite element formulations for three dimensional problems on a Windows platform. Here three different solvers, HSL_MA78, MUMPS and PARDISO are compared. The performance of these solvers is evaluated on a 64-bit machine with 16GB RAM for finite element formulation of flow through a rectangular channel. It is observed that using out-of-core PARDISO solver, relatively large problems can be solved. The implementation of Newton and modified Newton's iteration is also discussed.

European Ecological Network Natura 2000 - Opportunities and Threats

The research objective of the project and article “European Ecological Network Natura 2000 – opportunities and threats” Natura 2000 sites constitute a form of environmental protection, several legal problems are likely to result. Most controversially, certain sites will be subject to two regimes of protection: as national parks and as Natura 2000 sites. This dualism of the legal regulation makes it difficult to perform certain legal obligations related to the regimes envisaged under each form of environmental protection. Which regime and which obligations resulting from the particular form of environmental protection have priority and should prevail? What should be done if these obligations are contradictory? Furthermore, an institutional problem consists in that no public administration authority has the power to resolve legal conflicts concerning the application of a particular regime on a given site. There are also no criteria to decide priority and superiority of one form of environmental protection over the other. Which regulations are more important, those that pertain to national parks or to Natura 2000 sites? In the light of the current regulations, it is impossible to give a decisive answer to these questions. The internal hierarchy of forms of environmental protection has not been determined, and all such forms should be treated equally.

Study on Ultrasonic Vibration Effects on Grinding Process of Alumina Ceramic (Al2O3)

Nowadays, engineering ceramics have significant applications in different industries such as; automotive, aerospace, electrical, electronics and even martial industries due to their attractive physical and mechanical properties like very high hardness and strength at elevated temperatures, chemical stability, low friction and high wear resistance. However, these interesting properties plus low heat conductivity make their machining processes too hard, costly and time consuming. Many attempts have been made in order to make the grinding process of engineering ceramics easier and many scientists have tried to find proper techniques to economize ceramics' machining processes. This paper proposes a new diamond plunge grinding technique using ultrasonic vibration for grinding Alumina ceramic (Al2O3). For this purpose, a set of laboratory equipments have been designed and simulated using Finite Element Method (FEM) and constructed in order to be used in various measurements. The results obtained have been compared with the conventional plunge grinding process without ultrasonic vibration and indicated that the surface roughness and fracture strength improved and the grinding forces decreased.

Multiple Sequence Alignment Using Three- Dimensional Fragments

Background: Dialign is a DNA/Protein alignment tool for performing pairwise and multiple pairwise alignments through the comparison of gap-free segments (fragments) between sequence pairs. An alignment of two sequences is a chain of fragments, i.e local gap-free pairwise alignments, with the highest total score. METHOD: A new approach is defined in this article which relies on the concept of using three-dimensional fragments – i.e. local threeway alignments -- in the alignment process instead of twodimensional ones. These three-dimensional fragments are gap-free alignments constituting of equal-length segments belonging to three distinct sequences. RESULTS: The obtained results showed good improvments over the performance of DIALIGN.

Modeling and Analysis of Adaptive Buffer Sharing Scheme for Consecutive Packet Loss Reduction in Broadband Networks

High speed networks provide realtime variable bit rate service with diversified traffic flow characteristics and quality requirements. The variable bit rate traffic has stringent delay and packet loss requirements. The burstiness of the correlated traffic makes dynamic buffer management highly desirable to satisfy the Quality of Service (QoS) requirements. This paper presents an algorithm for optimization of adaptive buffer allocation scheme for traffic based on loss of consecutive packets in data-stream and buffer occupancy level. Buffer is designed to allow the input traffic to be partitioned into different priority classes and based on the input traffic behavior it controls the threshold dynamically. This algorithm allows input packets to enter into buffer if its occupancy level is less than the threshold value for priority of that packet. The threshold is dynamically varied in runtime based on packet loss behavior. The simulation is run for two priority classes of the input traffic – realtime and non-realtime classes. The simulation results show that Adaptive Partial Buffer Sharing (ADPBS) has better performance than Static Partial Buffer Sharing (SPBS) and First In First Out (FIFO) queue under the same traffic conditions.

A Perceptually Optimized Foveation Based Wavelet Embedded Zero Tree Image Coding

In this paper, we propose a Perceptually Optimized Foveation based Embedded ZeroTree Image Coder (POEFIC) that introduces a perceptual weighting to wavelet coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to a given bit rate a fixation point which determines the region of interest ROI. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEFIC quality assessment. Our POEFIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) foveation masking to remove or reduce considerable high frequencies from peripheral regions 2) luminance and Contrast masking, 3) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.

Performance and Emission Characteristics of a DI Diesel Engine Fuelled with Cashew Nut Shell Liquid (CNSL)-Diesel Blends

The increased number of automobiles in recent years has resulted in great demand for fossil fuel. This has led to the development of automobile by using alternative fuels which include gaseous fuels, biofuels and vegetables oils as fuel. Energy from biomass and more specific bio-diesel is one of the opportunities that could cover the future demand of fossil fuel shortage. Biomass in the form of cashew nut shell represents a new energy source and abundant source of energy in India. The bio-fuel is derived from cashew nut shell oil and its blend with diesel are promising alternative fuel for diesel engine. In this work the pyrolysis Cashew Nut Shell Liquid (CNSL)-Diesel Blends (CDB) was used to run the Direct Injection (DI) diesel engine. The experiments were conducted with various blends of CNSL and Diesel namely B20, B40, B60, B80 and B100. The results are compared with neat diesel operation. The brake thermal efficiency was decreased for blends of CNSL and Diesel except the lower blends of B20. The brake thermal efficiency of B20 is nearly closer to that of diesel fuel. Also the emission level of the all CNSL and Diesel blends was increased compared to neat diesel. The higher viscosity and lower volatility of CNSL leads to poor mixture formation and hence lower brake thermal efficiency and higher emission levels. The higher emission level can be reduced by adding suitable additives and oxygenates with CNSL and Diesel blends.

Adaptive MPC Using a Recursive Learning Technique

A model predictive controller based on recursive learning is proposed. In this SISO adaptive controller, a model is automatically updated using simple recursive equations. The identified models are then stored in the memory to be re-used in the future. The decision for model update is taken based on a new control performance index. The new controller allows the use of simple linear model predictive controllers in the control of nonlinear time varying processes.

Genetic Algorithms with Oracle for the Traveling Salesman Problem

By introducing the concept of Oracle we propose an approach for improving the performance of genetic algorithms for large-scale asymmetric Traveling Salesman Problems. The results have shown that the proposed approach allows overcoming some traditional problems for creating efficient genetic algorithms.

Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique

In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.

Linear Elasticity Problems Solved by Using the Fictitious Domain Method and Total - FETI Domain Decomposition

The main goal of this paper is to show a possibility, how to solve numerically elliptic boundary value problems arising in 2D linear elasticity by using the fictitious domain method (FDM) and the Total-FETI domain decomposition method. We briefly mention the theoretical background of these methods and demonstrate their performance on a benchmark.

PIELG: A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts

Due to the ever growing amount of publications about protein-protein interactions, information extraction from text is increasingly recognized as one of crucial technologies in bioinformatics. This paper presents a Protein Interaction Extraction System using a Link Grammar Parser from biomedical abstracts (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysis of contents of various syntactic roles as well as their linguistically significant and meaningful combinations. The system uses phrasal-prepositional verbs patterns to overcome preposition combinations problems. The recall and precision are 74.4% and 62.65%, respectively. Experimental evaluations with two other state-of-the-art extraction systems indicate that PIELG system achieves better performance. For further evaluation, the system is augmented with a graphical package (Cytoscape) for extracting protein interaction information from sequence databases. The result shows that the performance is remarkably promising.

Losses Analysis in TEP Considering Uncertainity in Demand by DPSO

This paper presents a mathematical model and a methodology to analyze the losses in transmission expansion planning (TEP) under uncertainty in demand. The methodology is based on discrete particle swarm optimization (DPSO). DPSO is a useful and powerful stochastic evolutionary algorithm to solve the large-scale, discrete and nonlinear optimization problems like TEP. The effectiveness of the proposed idea is tested on an actual transmission network of the Azerbaijan regional electric company, Iran. The simulation results show that considering the losses even for transmission expansion planning of a network with low load growth is caused that operational costs decreases considerably and the network satisfies the requirement of delivering electric power more reliable to load centers.

A New Approach to Face Recognition Using Dual Dimension Reduction

In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database.

An Algorithm Proposed for FIR Filter Coefficients Representation

Finite impulse response (FIR) filters have the advantage of linear phase, guaranteed stability, fewer finite precision errors, and efficient implementation. In contrast, they have a major disadvantage of high order need (more coefficients) than IIR counterpart with comparable performance. The high order demand imposes more hardware requirements, arithmetic operations, area usage, and power consumption when designing and fabricating the filter. Therefore, minimizing or reducing these parameters, is a major goal or target in digital filter design task. This paper presents an algorithm proposed for modifying values and the number of non-zero coefficients used to represent the FIR digital pulse shaping filter response. With this algorithm, the FIR filter frequency and phase response can be represented with a minimum number of non-zero coefficients. Therefore, reducing the arithmetic complexity needed to get the filter output. Consequently, the system characteristic i.e. power consumption, area usage, and processing time are also reduced. The proposed algorithm is more powerful when integrated with multiplierless algorithms such as distributed arithmetic (DA) in designing high order digital FIR filters. Here the DA usage eliminates the need for multipliers when implementing the multiply and accumulate unit (MAC) and the proposed algorithm will reduce the number of adders and addition operations needed through the minimization of the non-zero values coefficients to get the filter output.

Impact of Metallic Furniture on UWB Channel Statistical Characteristics by BER

The bit error rate (BER) performance for ultra-wide band (UWB) indoor communication with impact of metallic furniture is investigated. The impulse responses of different indoor environments for any transmitter and receiver location are computed by shooting and bouncing ray/image and inverse Fourier transform techniques. By using the impulse responses of these multipath channels, the BER performance for binary pulse amplitude modulation (BPAM) impulse radio UWB communication system are calculated. Numerical results have shown that the multi-path effect by the metallic cabinets is an important factor for BER performance. Also the outage probability for the UWB multipath environment with metallic cabinets is more serious (about 18%) than with wooden cabinets. Finally, it is worth noting that in these cases the present work provides not only comparative information but also quantitative information on the performance reduction.

Removal of Cationic Heavy Metal and HOC from Soil-Washed Water Using Activated Carbon

Soil washing process with a surfactant solution is a potential technology for the rapid removal of hydrophobic organic compound (HOC) from soil. However, large amount of washed water would be produced during operation and this should be treated effectively by proper methods. The soil washed water for complex contaminated site with HOC and heavy metals might contain high amount of pollutants such as HOC and heavy metals as well as used surfactant. The heavy metals in the soil washed water have toxic effects on microbial activities thus these should be removed from the washed water before proceeding to a biological waste-water treatment system. Moreover, the used surfactant solutions are necessary to be recovered for reducing the soil washing operation cost. In order to simultaneously remove the heavy metals and HOC from soil-washed water, activated carbon (AC) was used in the present study. In an anionic-nonionic surfactant mixed solution, the Cd(II) and phenanthrene (PHE) were effectively removed by adsorption on activated carbon. The removal efficiency for Cd(II) was increased from 0.027 mmol-Cd/g-AC to 0.142 mmol-Cd/g-AC as the mole ratio of SDS increased in the presence of PHE. The adsorptive capacity of PHE was also increased according to the SDS mole ratio due to the decrement of molar solubilization ratios (MSR) for PHE in an anionic-nonionic surfactant mixture. The simultaneous adsorption of HOC and cationic heavy metals using activated carbon could be a useful method for surfactant recovery and the reduction of heavy metal toxicity in a surfactant-enhanced soil washing process.