An Investigation on Thermo Chemical Conversions of Solid Waste for Energy Recovery

Solid waste can be considered as an urban burden or as a valuable resource depending on how it is managed. To meet the rising demand for energy and to address environmental concerns, a conversion from conventional energy systems to renewable resources is essential. For the sustainability of human civilization, an environmentally sound and techno-economically feasible waste treatment method is very important to treat recyclable waste. Several technologies are available for realizing the potential of solid waste as an energy source, ranging from very simple systems for disposing of dry waste to more complex technologies capable of dealing with large amounts of industrial waste. There are three main pathways for conversion of waste material to energy: thermo chemical, biochemical and physicochemical. This paper investigates the thermo chemical conversion of solid waste for energy recovery. The processes, advantages and dis-advantages of various thermo chemical conversion processes are discussed and compared. Special attention is given to Gasification process as it provides better solutions regarding public acceptance, feedstock flexibility, near-zero emissions, efficiency and security. Finally this paper presents comparative statements of thermo chemical processes and introduces an integrated waste management system.

Exploring Dimensionality, Systematic Mutations and Number of Contacts in Simple HP ab-initio Protein Folding Using a Blackboard-based Agent Platform

A computational platform is presented in this contribution. It has been designed as a virtual laboratory to be used for exploring optimization algorithms in biological problems. This platform is built on a blackboard-based agent architecture. As a test case, the version of the platform presented here is devoted to the study of protein folding, initially with a bead-like description of the chain and with the widely used model of hydrophobic and polar residues (HP model). Some details of the platform design are presented along with its capabilities and also are revised some explorations of the protein folding problems with different types of discrete space. It is also shown the capability of the platform to incorporate specific tools for the structural analysis of the runs in order to understand and improve the optimization process. Accordingly, the results obtained demonstrate that the ensemble of computational tools into a single platform is worthwhile by itself, since experiments developed on it can be designed to fulfill different levels of information in a self-consistent fashion. By now, it is being explored how an experiment design can be useful to create a computational agent to be included within the platform. These inclusions of designed agents –or software pieces– are useful for the better accomplishment of the tasks to be developed by the platform. Clearly, while the number of agents increases the new version of the virtual laboratory thus enhances in robustness and functionality.

The Creation of Sustainable Architecture by use of Transformable Intelligent Building Skins

Built environments have a large impact on environmental sustainability and if it is not considered properly can negatively affect our planet. The application of transformable intelligent building systems that automatically respond to environmental conditions is one of the best ways that can intelligently assist us to create sustainable environment. The significance of this issue is evident as energy crisis and environmental changes has made the sustainability the main concerns in many societies. The aim of this research is to review and evaluate the importance and influence of transformable intelligent structure on the creation of sustainable architecture. Intelligent systems in current buildings provide convenience through automatically responding to changes in environmental conditions, reducing energy dissipation and increase of the lifecycle of buildings. This paper by analyzing significant intelligent building systems will evaluate the potentials of transformable intelligent systems in the creation of sustainable architecture and environment.

A Comparative Study of Rigid and Modified Simplex Methods for Optimal Parameter Settings of ACO for Noisy Non-Linear Surfaces

There are two common types of operational research techniques, optimisation and metaheuristic methods. The latter may be defined as a sequential process that intelligently performs the exploration and exploitation adopted by natural intelligence and strong inspiration to form several iterative searches. An aim is to effectively determine near optimal solutions in a solution space. In this work, a type of metaheuristics called Ant Colonies Optimisation, ACO, inspired by a foraging behaviour of ants was adapted to find optimal solutions of eight non-linear continuous mathematical models. Under a consideration of a solution space in a specified region on each model, sub-solutions may contain global or multiple local optimum. Moreover, the algorithm has several common parameters; number of ants, moves, and iterations, which act as the algorithm-s driver. A series of computational experiments for initialising parameters were conducted through methods of Rigid Simplex, RS, and Modified Simplex, MSM. Experimental results were analysed in terms of the best so far solutions, mean and standard deviation. Finally, they stated a recommendation of proper level settings of ACO parameters for all eight functions. These parameter settings can be applied as a guideline for future uses of ACO. This is to promote an ease of use of ACO in real industrial processes. It was found that the results obtained from MSM were pretty similar to those gained from RS. However, if these results with noise standard deviations of 1 and 3 are compared, MSM will reach optimal solutions more efficiently than RS, in terms of speed of convergence.

Design and Analysis of Two-Phase Boost DC-DC Converter

Multiphasing of dc-dc converters has been known to give technical and economical benefits to low voltage high power buck regulator modules. A major advantage of multiphasing dc-dc converters is the improvement of input and output performances in the buck converter. From this aspect, a potential use would be in renewable energy where power quality plays an important factor. This paper presents the design of a 2-phase 200W boost converter for battery charging application. Analysis of results from hardware measurement of the boost converter demonstrates the benefits of using multiphase. Results from the hardware prototype of the 2-phase boost converter further show the potential extension of multiphase beyond its commonly used low voltage high current domains.

Evaluation of a Multi-Resolution Dyadic Wavelet Transform Method for usable Speech Detection

Many applications of speech communication and speaker identification suffer from the problem of co-channel speech. This paper deals with a multi-resolution dyadic wavelet transform method for usable segments of co-channel speech detection that could be processed by a speaker identification system. Evaluation of this method is performed on TIMIT database referring to the Target to Interferer Ratio measure. Co-channel speech is constructed by mixing all possible gender speakers. Results do not show much difference for different mixtures. For the overall mixtures 95.76% of usable speech is correctly detected with false alarms of 29.65%.

A Study on the Circumstances Affecting Elementary School Students in Their Familyand School Lives and Their Consequential Emotions

The purpose of this study is to determine the circumstances affecting elementary school students in their family and school lives and what kind of emotions children may feel because of these circumstances. The study was carried out according to the survey model. Four Turkish elementary schools provided 123 fourth grade students for participation in the study. The study-s data were collected by using worksheets for the activity titled “Important Days in Our Lives", which was part of the Elementary School Social Sciences Course 4th Grade Education Program. Data analysis was carried out according to the content analysis technique used in qualitative research. The study detected that circumstances of their family and school lives caused children to feel emotions such as happiness, sadness, anger, fear and jealousy. The circumstances and the emotions caused by these circumstances were analyzed according to gender and interpreted by presenting them with their frequencies.

A Visual Cryptography and Statistics Based Method for Ownership Identification of Digital Images

In this paper, a novel copyright protection scheme for digital images based on Visual Cryptography and Statistics is proposed. In our scheme, the theories and properties of sampling distribution of means and visual cryptography are employed to achieve the requirements of robustness and security. Our method does not need to alter the original image and can identify the ownership without resorting to the original image. Besides, our method allows multiple watermarks to be registered for a single host image without causing any damage to other hidden watermarks. Moreover, it is also possible for our scheme to cast a larger watermark into a smaller host image. Finally, experimental results will show the robustness of our scheme against several common attacks.

Synthesis of Unconventional Materials Using Chitosan and Crown Ether for Selective Removal of Precious Metal Ions

The polyfunctional and highly reactive bio-polymer, the chitosan was first regioselectively converted into dialkylated chitosan using dimsyl anionic solution(NaH in DMSO) and bromodecane after protecting amino groups by phthalic anhydride. The dibenzo-18-crown-6-ether, on the other hand, was converted into its carbonyl derivatives via Duff reaction prior to incorporate into chitosan by Schiff base formation. Thus formed diformylated dibenzo-18-crown-6-ether was condensed with lipophilic chitosan to prepare the novel solvent extraction reagent. The products were characterized mainly by IR and 1H-NMR. Hence, the multidentate crown ether-embedded polyfunctional bio-material was tested for extraction of Pd(II) and Pt(IV) in aqueous solution.

A File Splitting Technique for Reducing the Entropy of Text Files

A novel file splitting technique for the reduction of the nth-order entropy of text files is proposed. The technique is based on mapping the original text file into a non-ASCII binary file using a new codeword assignment method and then the resulting binary file is split into several subfiles each contains one or more bits from each codeword of the mapped binary file. The statistical properties of the subfiles are studied and it is found that they reflect the statistical properties of the original text file which is not the case when the ASCII code is used as a mapper. The nth-order entropy of these subfiles are determined and it is found that the sum of their entropies is less than that of the original text file for the same values of extensions. These interesting statistical properties of the resulting subfiles can be used to achieve better compression ratios when conventional compression techniques are applied to these subfiles individually and on a bit-wise basis rather than on character-wise basis.

Building Design to Save Lives when Earthquake May Strike the City

When earthquakes strike the city it results in great loss of lives. The present paper talks about a new innovative design system (MegEifel) for buildings which has a mechanism to mitigate deaths in case any earthquake strikes the city. If buildings will be designed according to MegEifel design then the occupants of the building will be safe even when they are in sleep or are doing day wise activities during the time earthquake strikes. The core structure is suggested to be designed on the principle that more deep the foundations are, the harder it is to uproot the structure. The buildings will have an Eifel rod dug deep into earth which will help save lives in tall buildings when earthquake strikes. This design takes a leverage of protective shells to save lives.

Photovoltaic Small-Scale Wastewater Treatment Project for Rural and New-Cultivated Areas in Egypt

The problem of wastewater treatment in Egypt is a two-fold problem; the first part concerning the existing rural areas, the second one dealing with new industrial/domestic areas. In Egypt several agricultural projects have been initiated by the government and the private sector as well, in order to change its infrastructure. As a reliable energy source, photovoltaic pumping systems have contributed to supply water for local rural communities worldwide; they can also be implemented to solve the problem “wastewater environment pollution". The solution of this problem can be categorised as recycle process. In addition, because of regional conditions past technologies are being reexamined to select a smallscale treatment system requiring low construction and maintenance costs. This paper gives the design guidelines of a Photovoltaic Small- Scale Wastewater Treatment Plant (PVSSWTP) based on technologies that can be transferred.

Network Coding-based ARQ scheme with Overlapping Selection for Resource Limited Multicast/Broadcast Services

Network coding has recently attracted attention as an efficient technique in multicast/broadcast services. The problem of finding the optimal network coding mechanism maximizing the bandwidth efficiency is hard to solve and hard to approximate. Lots of network coding-based schemes have been suggested in the literature to improve the bandwidth efficiency, especially network coding-based automatic repeat request (NCARQ) schemes. However, existing schemes have several limitations which cause the performance degradation in resource limited systems. To improve the performance in resource limited systems, we propose NCARQ with overlapping selection (OS-NCARQ) scheme. The advantages of OS-NCARQ scheme over the traditional ARQ scheme and existing NCARQ schemes are shown through the analysis and simulations.

Optimization for Reducing Handoff Latency and Utilization of Bandwidth in ATM Networks

To support mobility in ATM networks, a number of technical challenges need to be resolved. The impact of handoff schemes in terms of service disruption, handoff latency, cost implications and excess resources required during handoffs needs to be addressed. In this paper, a one phase handoff and route optimization solution using reserved PVCs between adjacent ATM switches to reroute connections during inter-switch handoff is studied. In the second phase, a distributed optimization process is initiated to optimally reroute handoff connections. The main objective is to find the optimal operating point at which to perform optimization subject to cost constraint with the purpose of reducing blocking probability of inter-switch handoff calls for delay tolerant traffic. We examine the relation between the required bandwidth resources and optimization rate. Also we calculate and study the handoff blocking probability due to lack of bandwidth for resources reserved to facilitate the rapid rerouting.

A Real-Time Signal Processing Technique for MIDI Generation

This paper presents a new hardware interface using a microcontroller which processes audio music signals to standard MIDI data. A technique for processing music signals by extracting note parameters from music signals is described. An algorithm to convert the voice samples for real-time processing without complex calculations is proposed. A high frequency microcontroller as the main processor is deployed to execute the outlined algorithm. The MIDI data generated is transmitted using the EIA-232 protocol. The analyses of data generated show the feasibility of using microcontrollers for real-time MIDI generation hardware interface.

Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems

This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.

A New Performance Characterization of Transient Analysis Method

This paper proposes a new performance characterization for the test strategy intended for second order filters denominated Transient Analysis Method (TRAM). We evaluate the ability of the addressed test strategy for detecting deviation faults under simultaneous statistical fluctuation of the non-faulty parameters. For this purpose, we use Monte Carlo simulations and a fault model that considers as faulty only one component of the filter under test while the others components adopt random values (within their tolerance band) obtained from their statistical distributions. The new data reported here show (for the filters under study) the presence of hard-to-test components and relatively low fault coverage values for small deviation faults. These results suggest that the fault coverage value obtained using only nominal values for the non-faulty components (the traditional evaluation of TRAM) seem to be a poor predictor of the test performance.

Non-destructive Watermelon Ripeness Determination Using Image Processing and Artificial Neural Network (ANN)

Agriculture products are being more demanding in market today. To increase its productivity, automation to produce these products will be very helpful. The purpose of this work is to measure and determine the ripeness and quality of watermelon. The textures on watermelon skin will be captured using digital camera. These images will be filtered using image processing technique. All these information gathered will be trained using ANN to determine the watermelon ripeness accuracy. Initial results showed that the best model has produced percentage accuracy of 86.51%, when measured at 32 hidden units with a balanced percentage rate of training dataset.

Hi-Fi Traffic Clearance Technique for Life Saving Vehicles using Differential GPS System

This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from the signal there is a chance of clearing the traffic. Traffic signal preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system and transmitting the information-s using a wireless transmitter via a wireless network. The fleet management system connected to a wireless receiver is capable of receiving the information transmitted by the lifesaving vehicle .A computer is also located at the intersection uses corrected vehicle position, speed & direction measurements, in conjunction with previously recorded data defining approach routes to the intersection, to determine the optimum time to switch a traffic light controller to preemption mode so that lifesaving vehicles can pass safely. In case when the ambulance need to take a “U" turn in a heavy traffic area we suggest a solution. Now we are going to make use of computerized median which uses LINKED BLOCKS (removable) to solve the above problem.

A Generic and Extensible Spidergon NoC

The Globally Asynchronous Locally Synchronous Network on Chip (GALS NoC) is the most efficient solution that provides low latency transfers and power efficient System on Chip (SoC) interconnect. This study presents a GALS and generic NoC architecture based on a configurable router. This router integrates a sophisticated dynamic arbiter, the wormhole routing technique and can be configured in a manner that allows it to be used in many possible NoC topologies such as Mesh 2-D, Tree and Polygon architectures. This makes it possible to improve the quality of service (QoS) required by the proposed NoC. A comparative performances study of the proposed NoC architecture, Tore architecture and of the most used Mesh 2D architecture is performed. This study shows that Spidergon architecture is characterised by the lower latency and the later saturation. It is also shown that no matter what the number of used links is raised; the Links×Diameter product permitted by the Spidergon architecture remains always the lower. The only limitation of this architecture comes from it-s over cost in term of silicon area.