Optimal Prices under Revenue Sharing Contract in a Supply Chain with Direct Channel

Westudy a dual-channel supply chain under decentralized setting in which manufacturer sells to retailer and to customers directly usingan online channel. A customer chooses the purchase-channel based on price and service quality. Also, to buy product from the retail store, the customer incurs a transportation cost influenced by the fluctuating gasoline cost. Both companies are under the revenue sharing contract. In this contract the retailer share a portion of the revenue to the manufacturer while the manufacturer will charge the lower wholesales price. The numerical result shows that the effects of gasoline costs, the revenue sharing ratio and the wholesale price play an important role in determining optimal prices. The result shows that when the gasoline price fluctuatesthe optimal on-line priceis relatively stable while the optimal retail price moves in the opposite direction of the gasoline prices.

Earth Station Neural Network Control Methodology and Simulation

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

A Unique Solution for Designing Low-Cost, Heterogeneous Sensor Networks Using a Middleware Integration Platform

Proprietary sensor network systems are typically expensive, rigid and difficult to incorporate technologies from other vendors. When using competing and incompatible technologies, a non-proprietary system is complex to create because it requires significant technical expertise and effort, which can be more expensive than a proprietary product. This paper presents the Sensor Abstraction Layer (SAL) that provides middleware architectures with a consistent and uniform view of heterogeneous sensor networks, regardless of the technologies involved. SAL abstracts and hides the hardware disparities and specificities related to accessing, controlling, probing and piloting heterogeneous sensors. SAL is a single software library containing a stable hardware-independent interface with consistent access and control functions to remotely manage the network. The end-user has near-real-time access to the collected data via the network, which results in a cost-effective, flexible and simplified system suitable for novice users. SAL has been used for successfully implementing several low-cost sensor network systems.

Speech Enhancement Using Kalman Filter in Communication

Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals.

An Experimental Study on Clothes Drying Using Waste Heat from Split Type Air Conditioner

This paper was to study the clothes dryer using waste heat from a split type air conditioner with a capacity of 12,648 btu/h. The drying chamber had a minimum cross section area with the size of 0.5 x 1.0 m2. The chamber was constructed by sailcloth and was inside folded with aluminium foil. Then, it was connected to the condensing unit of an air conditioner. The experiment was carried out in two aspects which were the clothes drying with and without auxiliary fan unit. The results showed that the drying rate of clothes in the chamber installed with and without auxiliary fan unit were 2.26 and 1.1 kg/h, respectively. In case of the chamber installed with a auxiliary fan unit, the additional power of 0.011 kWh was consumed and the drying rate was higher than that of clothes drying without auxiliary fan unit. Without auxiliary fan unit installation, no energy was required but there was a portion of hot air leaks away through the punctured holes at the wall of the drying chamber, hence the drying rate was dropped below. The drying rate of clothes drying using waste heat was higher than natural indoor drying and commercial dryer which their drying rate were 0.17 and 1.9 kg/h, respectively. It was noted that the COP of the air conditioner did not change during the operating of clothes drying.

Vertical GAA Silicon Nanowire Transistor with Impact of Temperature on Device Parameters

In this paper, we present a vertical wire NMOS device fabricated using CMOS compatible processes. The impact of temperature on various device parameters is investigated in view of usual increase in surrounding temperature with device density.

Rating Charts of R-22 Alternatives Flow through Adiabatic Capillary Tubes

Drop-in of R-22 alternatives in refrigeration and air conditioning systems requires a redesign of system components to improve system performance and reliability with the alternative refrigerants. The present paper aims at design adiabatic capillary tubes for R-22 alternatives such as R-417A, R-422D and R-438A. A theoretical model has been developed and validated with the available experimental data from literature for R-22 over a wide range of both operating and geometrical parameters. Predicted lengths of adiabatic capillary tube are compared with the lengths of the capillary tube needed under similar experimental conditions and majority of predictions are found to be within 4.4% of the experimental data. Hence, the model has been applied for R-417A, R- 422D and R-438A and capillary tube selection charts and correlations have been computed. Finally a comparison between the selected refrigerants and R-22 has been introduced and the results showed that R-438A is the closest one to R-22.

Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach

Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.

Simultaneous Saccharification and Fermentation(SSF) of Sugarcane Bagasse - Kinetics and Modeling

Simultaneous Saccharification and Fermentation (SSF) of sugarcane bagasse by cellulase and Pachysolen tannophilus MTCC *1077 were investigated in the present study. Important process variables for ethanol production form pretreated bagasse were optimized using Response Surface Methodology (RSM) based on central composite design (CCD) experiments. A 23 five level CCD experiments with central and axial points was used to develop a statistical model for the optimization of process variables such as incubation temperature (25–45°) X1, pH (5.0–7.0) X2 and fermentation time (24–120 h) X3. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation and contour plots were used to study the interactions among three relevant variables of the fermentation process. The fermentation experiments were carried out using an online monitored modular fermenter 2L capacity. The processing parameters setup for reaching a maximum response for ethanol production was obtained when applying the optimum values for temperature (32°C), pH (5.6) and fermentation time (110 h). Maximum ethanol concentration (3.36 g/l) was obtained from 50 g/l pretreated sugarcane bagasse at the optimized process conditions in aerobic batch fermentation. Kinetic models such as Monod, Modified Logistic model, Modified Logistic incorporated Leudeking – Piret model and Modified Logistic incorporated Modified Leudeking – Piret model have been evaluated and the constants were predicted.

Frequency-Variation Based Method for Parameter Estimation of Transistor Amplifier

In this paper, a frequency-variation based method has been proposed for transistor parameter estimation in a commonemitter transistor amplifier circuit. We design an algorithm to estimate the transistor parameters, based on noisy measurements of the output voltage when the input voltage is a sine wave of variable frequency and constant amplitude. The common emitter amplifier circuit has been modelled using the transistor Ebers-Moll equations and the perturbation technique has been used for separating the linear and nonlinear parts of the Ebers-Moll equations. This model of the amplifier has been used to determine the amplitude of the output sinusoid as a function of the frequency and the parameter vector. Then, applying the proposed method to the frequency components, the transistor parameters have been estimated. As compared to the conventional time-domain least squares method, the proposed method requires much less data storage and it results in more accurate parameter estimation, as it exploits the information in the time and frequency domain, simultaneously. The proposed method can be utilized for parameter estimation of an analog device in its operating range of frequencies, as it uses data collected from different frequencies output signals for parameter estimation.

RadMote: A Mobile Framework for Radiation Monitoring in Nuclear Power Plants

Wireless Sensor Networks (WSNs) have attracted the attention of many researchers. This has resulted in their rapid integration in very different areas such as precision agriculture,environmental monitoring, object and event detection and military surveillance. Due to the current WSN characteristics this technology is specifically useful in industrial areas where security, reliability and autonomy are basic, such as nuclear power plants, chemical plants, and others. In this paper we present a system based on WSNs to monitor environmental conditions around and inside a nuclear power plant, specifically, radiation levels. Sensor nodes, equipped with radiation sensors, are deployed in fixed positions throughout the plant. In addition, plant staff are also equipped with mobile devices with higher capabilities than sensors such as for example PDAs able to monitor radiation levels and other conditions around them. The system enables communication between PDAs, which form a Mobile Ad-hoc Wireless Network (MANET), and allows workers to monitor remote conditions in the plant. It is particularly useful during stoppage periods for inspection or in the event of an accident to prevent risk situations.

MPSO based Model Order Formulation Scheme for Discrete PID Controller Design

This paper proposes the novel model order formulation scheme to design a discrete PID controller for higher order linear time invariant discrete systems. Modified PSO (MPSO) based model order formulation technique has used to obtain the successful formulated second order system. PID controller is tuned to meet the desired performance specification by using pole-zero cancellation and proposed design procedures. Proposed PID controller is attached with both higher order system and formulated second order system. System specifications are tabulated and closed loop response is observed for stabilization process. The proposed method is illustrated through numerical examples from literature.

Review of Trust Models in Wireless Sensor Networks

The major challenge faced by wireless sensor networks is security. Because of dynamic and collaborative nature of sensor networks the connected sensor devices makes the network unusable. To solve this issue, a trust model is required to find malicious, selfish and compromised insiders by evaluating trust worthiness sensors from the network. It supports the decision making processes in wireless sensor networks such as pre key-distribution, cluster head selection, data aggregation, routing and self reconfiguration of sensor nodes. This paper discussed the kinds of trust model, trust metrics used to address attacks by monitoring certain behavior of network. It describes the major design issues and their countermeasures of building trust model. It also discusses existing trust models used in various decision making process of wireless sensor networks.

Bidirectional Chaotic Synchronization of Non-Autonomous Circuit and its Application for Secure Communication

The nonlinear chaotic non-autonomous fourth order system is algebraically simple but can generate complex chaotic attractors. In this paper, non-autonomous fourth order chaotic oscillator circuits were designed and simulated. Also chaotic nonautonomous Attractor is addressed suitable for chaotic masking communication circuits using Matlab® and MultiSIM® programs. We have demonstrated in simulations that chaos can be synchronized and applied to signal masking communications. We suggest that this phenomenon of chaos synchronism may serve as the basis for little known chaotic non-autonomous Attractor to achieve signal masking communication applications. Simulation results are used to visualize and illustrate the effectiveness of non-autonomous chaotic system in signal masking. All simulations results performed on nonautonomous chaotic system are verify the applicable of secure communication.

Performance Evaluation of Energy Efficient Communication Protocol for Mobile Ad Hoc Networks

A mobile ad hoc network is a network of mobile nodes without any notion of centralized administration. In such a network, each mobile node behaves not only as a host which runs applications but also as a router to forward packets on behalf of others. Clustering has been applied to routing protocols to achieve efficient communications. A CH network expresses the connected relationship among cluster-heads. This paper discusses the methods for constructing a CH network, and produces the following results: (1) The required running costs of 3 traditional methods for constructing a CH network are not so different from each other in the static circumstance, or in the dynamic circumstance. Their running costs in the static circumstance do not differ from their costs in the dynamic circumstance. Meanwhile, although the routing costs required for the above 3 methods are not so different in the static circumstance, the costs are considerably different from each other in the dynamic circumstance. Their routing costs in the static circumstance are also very different from their costs in the dynamic circumstance, and the former is one tenths of the latter. The routing cost in the dynamic circumstance is mostly the cost for re-routing. (2) On the strength of the above results, we discuss new 2 methods regarding whether they are tolerable or not in the dynamic circumstance, that is, whether the times of re-routing are small or not. These new methods are revised methods that are based on the traditional methods. We recommended the method which produces the smallest routing cost in the dynamic circumstance, therefore producing the smallest total cost.

Direct Method for Converting FIR Filter with Low Nonzero Tap into IIR Filter

In this paper, we proposed the direct method for converting Finite-Impulse Response (FIR) filter with low nonzero tap into Infinite-Impulse Response (IIR) filter using the pre-determined table. The prony method is used by ghost cancellator which is IIR approximation to FIR filter which is better performance than IIR and have much larger calculation difference. The direct method for many ghost combination with low nonzero tap of NTSC(National Television System Committee) TV signal in Korea is described. The proposed method is illustrated with an example.

Hopf Bifurcation for a New Chaotic System

In this paper, a three dimensional autonomous chaotic system is considered. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived with the help of normal form theory. Finally, a numerical example is given.

Stages of Changes for Physical Activity among Iranian Adolescent Girls

Background: Regular physical activity contributes positively to physical and psychological health. In the present study, the stages of change of physical activity and the total physical Aims: The aim of this study was to investigate the proportion of adolescent girls in each stages of change and the causative factors associated with physical activity such as the related social support and self efficacy in a sample of the high school students. Methods: In this study, Social Cognitive Theory (SCT) and the Transtheorical Model (TTM) guided instrument development. The data regarding the demographics, psychosocial determinants of physical activity, stage of change and physical activity was gathered by questionnaires. Several measures of psychosocial determinants of physical activity were translated from English into Persian using the back-translation technique. These translated measures were administered to 512 ninth and tenth-grade Iranian high school students for factor analysis. Results: The distribution of the stage of change for physical activity was as follow: 18/5% in precontemplation, 23.4% in contemplation, 38.2% in preparation, 4.6% in action and 15.3% in maintenance. They were in 80.1% pre-adoption stages (precontemplation stage, contemplation stage and preparation stage) and 19.9% post-adoption stages (action stage and maintenance stage) of physical activity. There was a significant relate between age and physical activity in adolescent girls (age-related decline of physical activity) p

Strategies for Developing e-LMS for Tanzania Secondary Schools

Tanzania secondary schools in rural areas are geographically and socially isolated, hence face a number of problems in getting learning materials resulting in poor performance in National examinations. E-learning as defined to be the use of information and communication technology (ICT) for supporting the educational processes has motivated Tanzania to apply ICT in its education system. There has been effort to improve secondary school education using ICT through several projects. ICT for e-learning to Tanzania rural secondary school is one of the research projects conceived by the University of Dar-es-Salaam through its College of Engineering and Technology. The main objective of the project is to develop a tool to enable ICT support rural secondary school. The project is comprehensive with a number of components, one being development of e-learning management system (e-LMS) for Tanzania secondary schools. This paper presents strategies of developing e-LMS. It shows the importance of integrating action research methodology with the modeling methods as presented by model driven architecture (MDA) and the usefulness of Unified Modeling Language (UML) on the issue of modeling. The benefit of MDA will go along with the development based on software development life cycle (SDLC) process, from analysis and requirement phase through design and implementation stages as employed by object oriented system analysis and design approach. The paper also explains the employment of open source code reuse from open source learning platforms for the context sensitive development of the e-LMS for Tanzania secondary schools.

Instructional Design and Development Utilizing Technology: A Student Perspective

The sequence Analyze, Design, Develop, Implement, and Evaluate (ADDIE) provides a powerful methodology for designing computer-based educational materials. Helping students to understand this design process sequence may be achieved by providing them with direct, guided experience. This article examines such help and guidance and the overall learning process from a student-s personal experience.