Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS

This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.

An Evaluation of Drivers in Implementing Sustainable Manufacturing in India: Using DEMATEL Approach

Due to growing concern about environmental and social consequences throughout the world, a need has been felt to incorporate sustainability concepts in conventional manufacturing. This paper is an attempt to identify and evaluate drivers in implementing sustainable manufacturing in Indian context. Nine possible drivers for successful implementation of sustainable manufacturing have been identified from extensive review. Further, Decision Making Trial and Evaluation Laboratory (DEMATEL) approach has been utilized to evaluate and categorize these identified drivers for implementing sustainable manufacturing in to the cause and effect groups. Five drivers (Societal Pressure and Public Concerns; Regulations and Government Policies; Top Management Involvement, Commitment and Support; Effective Strategies and Activities towards Socially Responsible Manufacturing and Market Trends) have been categorized into the cause group and four drivers (Holistic View in Manufacturing Systems; Supplier Participation; Building Sustainable culture in Organization; and Corporate Image and Benefits) have been categorized into the effect group. “Societal Pressure and Public Concerns” has been found the most critical driver and “Corporate Image and Benefits” as least critical or the most easily influenced driver to implementing sustainable manufacturing in Indian context. This paper may surely help practitioners in better understanding of these drivers and their priorities towards effective implementation of sustainable manufacturing.

Solution Economic Power Dispatch Problems by an Ant Colony Optimization Approach

The objective of the Economic Dispatch(ED) Problems of electric power generation is to schedule the committed generating units outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a new method of ED problems utilizing the Max-Min Ant System Optimization. Historically, traditional optimizations techniques have been used, such as linear and non-linear programming, but within the past decade the focus has shifted on the utilization of Evolutionary Algorithms, as an example Genetic Algorithms, Simulated Annealing and recently Ant Colony Optimization (ACO). In this paper we introduce the Max-Min Ant System based version of the Ant System. This algorithm encourages local searching around the best solution found in each iteration. To show its efficiency and effectiveness, the proposed Max-Min Ant System is applied to sample ED problems composed of 4 generators. Comparison to conventional genetic algorithms is presented.

Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods

Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and solgel auto-combustion methods were 1300°C and 1000°C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Srferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.

Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods

Molluca Collision Zone is located at the junction of the Eurasian, Australian, Pacific and the Philippines plates. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. In this research, we used data of shallow earthquakes type and its magnitudes ≥4 SR (period 1964-2013). From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.

A Novel Approach of Multilevel Inverter with Reduced Power Electronics Devices

In this paper family of multilevel inverter topology with reduced number of power switches is presented. The proposed inverter can generate both even and odd level. The proposed topology is suitable for symmetric structure. The proposed symmetric inverter results in reduction of power switches, power diode and gate driver circuits and also it may further minimize the installation area and cost. To prove the superiority of proposed topology is compared with conventional topologies. The performance of this symmetric multilevel inverter has been tested by computer based simulation and prototype based experimental setup for nine-level inverter is developed and results are verified.

Business Penetration through Print Media: A Review of Select Enablers

It’s an era of high competition, dynamism and complexities which have forced organizations to change dramatically due to rising customer expectations. Marketers are under constant pressure to deliver finest to their customers. With the advent of technology, marketers have identified latest advertising media options to reach out to target audience. But the conventional ways of print advertisements still holds a deeper penetration and coverage. Various researchers and practitioners have studied the area of print media advertising and have tried to identify and implement advertisement effectiveness enablers. The purpose of this paper is to suggest select enablers for print media in Indian context using an integrated approach of review of literature and investigative interviews with academicians and experts from the area of advertising.

Improving the Dissolution Rate of Folic Acid via the Antisolvent Vapour Precipitation

Folic acid (FA) is known to be an important supplement to prevent neural tube defect (NTD) in pregnant women. Similar to some commercial formulations, sodium bicarbonate solution is used as a solvent for FA. This work uses the antisolvent vapour precipitation (AVP), incorporating ethanol vapour as the convective drying medium in place of air to produce branch-like micro-structure FA particles. Interestingly, the dissolution rate of the resultant particle is 2-3 times better than the particle produce from conventional air drying due to the higher surface area of particles produced. The higher dissolution rate could possibly improve the delivery and absorption of FA in human body. This application could potentially be extended to other commercial products, particularly in less soluble drugs to improve its solubility.

GCM Based Fuzzy Clustering to Identify Homogeneous Climatic Regions of North-East India

The North-eastern part of India, which receives heavier rainfall than other parts of the subcontinent, is of great concern now-a-days with regard to climate change. High intensity rainfall for short duration and longer dry spell, occurring due to impact of climate change, affects river morphology too. In the present study, an attempt is made to delineate the North-eastern region of India into some homogeneous clusters based on the Fuzzy Clustering concept and to compare the resulting clusters obtained by using conventional methods and nonconventional methods of clustering. The concept of clustering is adapted in view of the fact that, impact of climate change can be studied in a homogeneous region without much variation, which can be helpful in studies related to water resources planning and management. 10 IMD (Indian Meteorological Department) stations, situated in various regions of the North-east, have been selected for making the clusters. The results of the Fuzzy C-Means (FCM) analysis show different clustering patterns for different conditions. From the analysis and comparison it can be concluded that nonconventional method of using GCM data is somehow giving better results than the others. However, further analysis can be done by taking daily data instead of monthly means to reduce the effect of standardization.

Effects of Gamification on Lower Secondary School Students’ Motivation and Engagement

This paper explores the effects of gamification on lower secondary school students’ motivation and engagement in the classroom. Two-group posttest-only experimental design were employed to study the influence of gamification teaching method (GTM) when compared with conventional teaching method (CTM) on 60 lower secondary school students. The Student Engagement Instrument (SEI) and Intrinsic Motivation Inventory (IMI) were used to assess students’ intrinsic motivation and engagement level towards the respective teaching method. Finding indicates that students who completed the GTM lesson were significantly higher in intrinsic motivation to learn than those from the CTM. Although the result were insignificant and only marginal difference in the engagement mean, GTM still show better potential in raising student’s engagement in class when compared with CTM. This finding proves that the GTM is likely to solve the current issue of low motivation to learn and low engagement in class among lower secondary school students in Malaysia. On the other hand, despite being not significant, higher mean indicates that CTM positively contribute to higher peer support for learning and better teacher and student relationship when compared with GTM. As a conclusion, gamification approach is flexible and can be adapted into many learning content to enhance the intrinsic motivation to learn and to some extent, encourage better student engagement in class.

Approach for an Integrative Technology Assessment Method Combining Product Design and Manufacturing Process

The systematic evaluation of manufacturing technologies with regard to the potential for product designing constitutes a major challenge. Until now, conventional evaluation methods primarily consider the costs of manufacturing technologies. Thus, the potential of manufacturing technologies for achieving additional product design features is not completely captured. To compensate this deficit, final evaluations of new technologies are mainly intuitive in practice. Therefore, an additional evaluation dimension is needed which takes the potential of manufacturing technologies for specific realizable product designs into account. In this paper, we present the approach of an evaluation method for selecting manufacturing technologies with regard to their potential for product designing. This research is done within the Fraunhofer innovation cluster »AdaM« (Adaptive Manufacturing) which targets the development of resource efficient and adaptive manufacturing technology processes for complex turbomachinery components.

Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix

This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nanocrystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nanocomposites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900−1200 ◦C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nanocrystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ∼4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nanoparticles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nanocrystals were found to be just moderately modified in comparison to the bulk phases.

Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes

Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.

Sigma-Delta ADCs Converter a Study Case

The Sigma-Delta A/D converters have been proposed as a practical application for A/D conversion at high rates because of its simplicity and robustness to imperfections in the circuit, also because the traditional converters are more difficult to implement in VLSI technology. These difficulties with conventional conversion methods need precise analog components in their filters and conversion circuits, and are more vulnerable to noise and interference. This paper aims to analyze the architecture, function and application of Analog-Digital converters (A/D) Sigma-Delta to overcome these difficulties, showing some simulations using the Simulink software and Multisim.

Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection

A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results.

A Cooperative Space-Time Transmission Scheme Based On Symbol Combinations

This paper proposes a cooperative Alamouti space time transmission scheme with low relay complexity for the cooperative communication systems. In the proposed scheme, the source node combines the data symbols to construct the Alamouti-coded form at the destination node, while the conventional scheme performs the corresponding operations at the relay nodes. In simulation results, it is shown that the proposed scheme achieves the second order cooperative diversity while maintaining the same bit error rate (BER) performance as that of the conventional scheme.

Interactive Planning of Suburban Apartment Buildings

Construction in Finland is focusing increasingly on renovation instead of conventional new construction, and this trend will continue to grow in the coming years and decades. Renovation of the large number of suburban residential apartment buildings built in the 1960s and 1970s poses a particular challenge. However, renovation projects are demanding for the residents of these buildings, since they usually are uninitiated in construction issues. On the other hand, renovation projects generally apply the operating models of new construction. Nevertheless, the residents of an existing residential apartment building are some of the best experts on the site. Thus, in this research project we applied a relational model in developing and testing at case sites a planning process that employs interactive planning methods. Current residents, housing company managers, the city zoning manager, the contractor’s and prefab element supplier’s representatives, professional designers and researchers all took part in the planning. The entire interactive planning process progressed phase by phase as the participants’ and designers’ concerted discussion and ideation process, so that the end result was a renovation plan desired by the residents.

Synthesis of Hard Magnetic Material from Secondary Resources

Strontium hexaferrite (SrFe12O19; Sr-ferrite) is one of the well-known materials for permanent magnets. In this study, Mtype strontium ferrite was prepared by following the conventional ceramic method from steelmaking by-product. Initial materials; SrCO3 and by-product, were mixed together in the composition of SrFe12O19 in different Sr/Fe ratios. The mixtures of these raw materials were dry-milled for 6h. The blended powder was presintered (i.e. calcination) at 1000°C for different times periods, then cooled down to room temperature. These pre-sintered samples were re-milled in a dry atmosphere for 1h and then fired at different temperatures in atmospheric conditions, and cooled down to room temperature. The produced magnetic powder has a dense hexagonal grain shape structure. The calculated energy product values for the produced samples ranged from 0.3 to 2.4 MGOe.

Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources

Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using α cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.