Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix

This article presents summary on preparation and
characterization of zinc, copper, cadmium and cobalt chromite
nanocrystals, embedded in an amorphous silica matrix. The
ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2
nanocomposites were prepared by a conventional sol-gel method
under acid catalysis. Final heat treatment of the samples was carried
out at temperatures in the range of 900−1200 ◦C to adjust the
phase composition and the crystallite size, respectively. The resulting
samples were characterized by Powder X-ray diffraction (PXRD),
High Resolution Transmission Electron Microscopy (HRTEM),
Raman/FTIR spectroscopy and magnetic measurements. Formation
of the spinel phase was confirmed in all samples. The average size of
the nanocrystals was determined from the PXRD data and by direct
particle size observation on HRTEM; both results were correlated.
The mean particle size (reviewed by HRTEM) was in the range from
∼4 to 46 nm. The results showed that the sol-gel method can be
effectively used for preparation of the spinel chromite nanoparticles
embedded in the silica matrix and the particle size is driven by the
type of the cation A2+ in the spinel structure and the temperature
of the final heat treatment. Magnetic properties of the nanocrystals
were found to be just moderately modified in comparison to the bulk
phases.





References:
[1] B. N. Kim, K. Hiraga, K. Merita and Y. Sakka, ”A high-strain-rate
superplastic ceramic”, Nature, vol. 413, pp. 288-291, July 2001.
[2] K. Zakrzewska, ”Mixed oxides as gas sensors”, Thin Solid Films, vol. 391,
pp. 229-239, July 2001.
[3] A. Galdikas, Z. Martunas and A. Setkus, ”SnInO-based chlorine gas
sensor”, Sens. Actuators B, vol. 7, pp. 633-636, March 1992.
[4] D. H. Dawson and D. E. Williams, ”Gas-sensitive resistors: surface
interaction of chlorine with semiconducting oxides”, J. Mater. Chem.,
vol. 6, pp. 409-414, 1996.
[5] C. V. Gropal Reddy, S. V. Manorama and V. J. Rao, ”Semiconducting gas
sensor for chlorine based on inverse spinel nickel ferrite”, Sens. Actuators
B, vol. 55, pp. 90-95, Apr. 1999.
[6] J. Tamaki, C. Naruo, Y. Yamamoto and M. Matsuoka, ”Sensing properties
to dilute chlorine gas of indium oxide based thin film sensors prepared
by electron beam evaporation”, Sens. Actuators B, vol. 83, pp. 190-194,
March 2002.
[7] H. Aono, F. Sugimoto, Y. Mori and Y. Okajima, ”Cl2 gas sensor using
BaCl2-KCl solid-electrolyte prepared by melting method”, Chem. Lett.,
vol. 6, pp. 1039-1042, 1993.
[8] X. Niu, D. Weiping and D. Weiumin, ”Preparation and gas sensing
properties of ZnM2O4 (M = Fe, Co, Cr)”, Sens. Actuators B, vol. 99,
pp. 405-409, May 2004.
[9] S. Ji, S.-H. Lee, C. Broholm, T. Y. Koo, W. Ratcliff, S.-W. Cheong et
al., ”Spin-lattice order in frustrated ZnCr2O4”, Phys. Rev. Lett., vol. 103,
pp. 037201, July 2009.
[10] S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T. H. Kim
et al., ”Emergent excitations in a geometrically frustrated magnet”,
Nature, vol. 418, pp. 856-858, July 2002.
[11] S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff and S.-W. Cheong, ”Local
spin resonance and spin-peierls-like phase transition in a geometrically
frustrated antiferromagnet”, Phys. Rev. Lett., vol. 84, pp. 3718-3721,
Apr. 2000.
[12] M. Matsuda, ”Magnetic structure of a frustrated antiferromagnetic spinel
CdCr2O4studied by spherical neutron polarimetry”, Phys. B, vol. 397,
pp. 7-10, July 2007.
[13] Y. Yamashita and K. Ueda, ”Spin-driven Jahn-Teller distortion in a
pyrochlore system”, Phys. Rev. Lett., vol. 85, pp. 4960-4963, Dec. 2000.
[14] J.-H. Chung, M. Matsuda, S.-H. Lee, K. Kakurai, H. Ueda et
al., ”Statics and dynamics of incommensurate spin order in a
geometrically frustrated antiferromagnet CdCr2O4”, Phys. Rev. Lett.,
vol. 95, pp. 247204, Dec. 2005.
[15] M. Gerloch, ”The sense of Jahn-Teller distortions in octahedral
copper(II) and other transition-metal complexes”, Inorg. Chem., vol. 20,
pp. 638-640, Febr. 1981.
[16] N. Menyuk, K. Dwight and A. Wold, ”Ferrimagnetic spiral
configurations in cobalt chromite”, J. Phys. France, vol. 25, pp. 528-536,
May 1964.
[17] K. Tomiyasu, J. Fukunaga, and H. Suzuki, ”Magnetic short-range order
and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by
means of neutron scattering and magnetization measurements”, Phys. Rev.
B, vol. 70, pp. 214434, Dec. 2004.
[18] G. Lawes, B. Melot, K. Page, C Ederer, M. A. Hayward, Th. Proffen et
al., ”Dielectric anomalies and spiral magnetic order in CoCr2O4” Phys.
Rev. B, vol. 74, pp. 024413, July 2006.
[19] R. N. Bhowmik, R. Ranganathan and R. Nagarajan, ”Lattice expansion
and noncollinear to collinear ferrimagnetic order in a MnCr2O4
nanoparticle”, Phys. Rev. B, vol. 73, pp. 144413, Apr. 2006.
[20] J. Plocek, A. Hutlova, D. Niznansky, J. Bursik, J. L. Rehspringer and
Z. Micka, ”Preparation of CuFe2O4/SiO2 Nanocomposite by Sol-Gel
Method”, Mater. Sci.-Poland, vol. 23, pp. 697-705, 2005.
[21] J. Plocek, A. Hutlova, D. Niznansky, J. Bursik, J. L. Rehspringer
and Z. Micka, ”Preparation of ZnFe2O4/SiO2 and CdFe2O4/SiO2
nanocomposites by solgel method”, J. Non-Cryst. Solids, vol. 315,
pp. 70-76, Jan. 2003.
[22] J. Rodriguez-Carvajal, FullProf User’s Guide Manual, France:
CEA-CRNS, 2000.
[23] P. Scherrer, ”Bestimmung der Gr¨oße und der inneren Struktur von
Kolloidteilchen mittels R¨ontgenstrahlen”, Nachr. Ges. Wiss. G¨ottingen,
vol. 2, pp. 98-100, 1918.
[24] P. Garc´ıa Fasado and I. Raisnes, ”Preparation and crystal data of
the spinel series Co1+2sCr2-3sSbsO4 (O≤s≤3/2)”, Polyhedron, vol. 5,
pp. 787-789, 1986.
[25] D. Levy, V. Diella, A. Pavese, M. Diapiaggi, A. Sani, ”P-V equation
of State, thermal expansion, and P-T stability of synthetic zincochromite
(ZnCr2O4 spinel)”, Am. Mineral., vol. 90, pp. 1157-1162, 2005.
[26] S. Bord´acs, D. Varjas, I. K´ezsm´arki, G. Mih´aly, L. Baldassarre,
A. Abouelsayed et al., ”Magnetic-order-induced crystal symmetry
lowering in ACr2O4 ferrimagnetic spinels”, Phys. Rev. Lett., vol. 103,
pp. 077205, Aug. 2009.
[27] Ch. Kant, J. Deisenhofer, T. Rudolf, F. Mayr, F. Schrettle, A. Loidl et
al., ”Optical phonons, spin correlations, and spin-phonon coupling in the
frustrated pyrochlore magnets CdCr2O4 and ZnCr2O4”, Phys. Rev. B,
vol. 80, pp. 214417, Dec. 2009.
[28] A. A. Khassin, G. N. Kustova, H. Jobic, T. M. Yurieva, Y. A. Chesalov,
G. A. Filonenkoet al., ”The state of absorbed hydrogen in the structure of
reduced copper chromite from the vibration spectra The state of absorbed
hydrogen in the structure of reduced copper chromite from the vibration
spectra”, Phys. Chem. Chem. Phys., vol. 11, pp. 6090-6097, May 2009.
[29] J. B. Reddy and R. L. Frost, ”Spectroscopic characterization of chromite
from the Moa-Baracoa Ophiolitic Massif, Cuba”, Spectrochim. Acta Part
A, vol. 61, pp. 1721-1728, June 2005.
[30] D. P. Shoemaker and R. Seshadri, ”Total-scattering descriptions of local
and cooperative distortions in the oxide spinel Mg1-xCuxCr2O4 with
dilute Jahn-Teller ions”, Phys. Rev. B, vol. 82, pp. 214107, Dec. 2010. [31] M. M. Sinha, ”Vibrational analysis of optical phonons in mixed chromite
spinels”, Nucl. Instrum. Methods Phys. Res. Sect. B, vol. 153, pp. 183-185,
June1999.
[32] Z. V. Stanojevi´c Marinkovi´c, N. Romˇcevi´c, B. Stojanovi´c,
”Spectroscopic study of spinel ZnCr2O4 obtained from mechanically
activated ZnO-Cr2O3 mixtures”, J. Eur. Ceram. Soc., vol. 27, pp. 903-907,
2007.
[33] Z. Wang, P. Lazor, S. K. Saxena, G. Artioli, ”High-pressure Raman
spectroscopic study of spinel (ZnCr2O4)”, J. Solid State Chem., vol. 165,
pp. 165-170, Apr. 2002.
[34] Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Atime, Y. Tokura,
”Magnetic reversal of the ferroelectric polarization in a multiferroic spinel
oxide”, Phys. Rev. Lett., vol. 96, pp. 207204, May 2006.