Health Monitoring of Power Transformers by Dissolved Gas Analysis using Regression Method and Study the Effect of Filtration on Oil

Economically transformers constitute one of the largest investments in a Power system. For this reason, transformer condition assessment and management is a high priority task. If a transformer fails, it would have a significant negative impact on revenue and service reliability. Monitoring the state of health of power transformers has traditionally been carried out using laboratory Dissolved Gas Analysis (DGA) tests performed at periodic intervals on the oil sample, collected from the transformers. DGA of transformer oil is the single best indicator of a transformer-s overall condition and is a universal practice today, which started somewhere in the 1960s. Failure can occur in a transformer due to different reasons. Some failures can be limited or prevented by maintenance. Oil filtration is one of the methods to remove the dissolve gases and prevent the deterioration of the oil. In this paper we analysis the DGA data by regression method and predict the gas concentration in the oil in the future. We bring about a comparative study of different traditional methods of regression and the errors generated out of their predictions. With the help of these data we can deduce the health of the transformer by finding the type of fault if it has occurred or will occur in future. Additional in this paper effect of filtration on the transformer health is highlight by calculating the probability of failure of a transformer with and without oil filtrating.

Effects of Beak Trimming on Behavior and Agonistic Activity of Thai Native Pullets Raised in Floor Pens

The effect of beak trimming on behavior of two strains of Thai native pullets kept in floor pens was studied. Six general activities (standing, crouching, moving, comforting, roosting, and nesting), 6 beak related activities (preening, feeding, drinking, pecking at inedible object, feather pecking, and litter pecking), and 4 agonistic activities (head pecking, threatening, avoiding, and fighting) were measured twice a for 15 consecutive days, started when the pullets were 19 wk old. It was found that beak trimmed pullets drank more frequent (P

Seasonal Prevalence of Aedes aegypti and Ae.albopictus in Three Topographical Areas of Southern Thailand

This study investigated the seasonal prevalence of Aedes aegypti and Ae. albopictus larvae in three topographical areas (i.e. mangrove, rice paddy and mountainous areas). Samples were collected from 300 households in both wet and dry seasons in nine districts in Nakhon Si Thammarat province. Ae. aegypti and Ae. albopictus were found in 21 out of 29 types of water containers in mangrove, rice paddy and mountainous areas. Ae. aegypti and Ae. albopictus laid eggs in different container types depending on season and topographical areas. Ae. aegypti larvae were found most in metal box in mangrove and mountainous areas in wet season. Ae. albopictus larvae were also found most in metal box in mangrove and mountainous areas in both wet and dry seasons. All Ae. albopictus larval indices were higher than Ae. aegypti larval indices in all three topographical areas and both seasons. HI and BI did not differ in three topographical areas but differed between Aedes sp. HI for both Ae. aegypti and Ae. albopictus in all three topographical areas in both seasons were greater than 10 %, except Aedes aegypti in rice paddy area in wet season. This indicated high risks of DHF transmission in these areas.

Ensembling Adaptively Constructed Polynomial Regression Models

The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.

An Analytical Framework for Multi-Site Supply Chain Planning Problems

As the gradual increase of the enterprise scale, the firms may possess many manufacturing plants located in different places geographically. This change will result in the multi-site production planning problems under the environment of multiple plants or production resources. Our research proposes the structural framework to analyze the multi-site planning problems. The analytical framework is composed of six elements: multi-site conceptual model, product structure (bill of manufacturing), production strategy, manufacturing capability and characteristics, production planning constraints, and key performance indicators. As well as the discussion of these six ingredients, we also review related literatures in this paper to match our analytical framework. Finally we take a real-world practical example of a TFT-LCD manufacturer in Taiwan to explain our proposed analytical framework for the multi-site production planning problems.

Dynamic Modeling of Intelligent Air-Cushion Tracked Vehicle for Swamp Peat

Modeling of the dynamic behavior and motion are renewed interest in the improved tractive performance of an intelligent air-cushion tracked vehicle (IACTV). This paper presents a new dynamical model for the forces on the developed small scale intelligent air-cushion tracked vehicle moving over swamp peat. The air cushion system partially supports the 25 % of vehicle total weight in order to make the vehicle ground contact pressure 7 kN/m2. As the air-cushion support system can adjust automatically on the terrain, so the vehicle can move over the terrain without any risks. The springdamper system is used with the vehicle body to control the aircushion support system on any undulating terrain by making the system sinusoidal form. Experiments have been carried out to investigate the relationships among tractive efficiency, slippage, traction coefficient, load distribution ratio, tractive effort, motion resistance and power consumption in given terrain conditions. Experiment and simulation results show that air-cushion system improves the vehicle performance by keeping traction coefficient of 71% and tractive efficiency of 62% and the developed model can meet the demand of transport efficiency with the optimal power consumption.

Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory

This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.

Library Aware Power Conscious Realization of Complementary Boolean Functions

In this paper, we consider the problem of logic simplification for a special class of logic functions, namely complementary Boolean functions (CBF), targeting low power implementation using static CMOS logic style. The functions are uniquely characterized by the presence of terms, where for a canonical binary 2-tuple, D(mj) ∪ D(mk) = { } and therefore, we have | D(mj) ∪ D(mk) | = 0 [19]. Similarly, D(Mj) ∪ D(Mk) = { } and hence | D(Mj) ∪ D(Mk) | = 0. Here, 'mk' and 'Mk' represent a minterm and maxterm respectively. We compare the circuits minimized with our proposed method with those corresponding to factored Reed-Muller (f-RM) form, factored Pseudo Kronecker Reed-Muller (f-PKRM) form, and factored Generalized Reed-Muller (f-GRM) form. We have opted for algebraic factorization of the Reed-Muller (RM) form and its different variants, using the factorization rules of [1], as it is simple and requires much less CPU execution time compared to Boolean factorization operations. This technique has enabled us to greatly reduce the literal count as well as the gate count needed for such RM realizations, which are generally prone to consuming more cells and subsequently more power consumption. However, this leads to a drawback in terms of the design-for-test attribute associated with the various RM forms. Though we still preserve the definition of those forms viz. realizing such functionality with only select types of logic gates (AND gate and XOR gate), the structural integrity of the logic levels is not preserved. This would consequently alter the testability properties of such circuits i.e. it may increase/decrease/maintain the same number of test input vectors needed for their exhaustive testability, subsequently affecting their generalized test vector computation. We do not consider the issue of design-for-testability here, but, instead focus on the power consumption of the final logic implementation, after realization with a conventional CMOS process technology (0.35 micron TSMC process). The quality of the resulting circuits evaluated on the basis of an established cost metric viz., power consumption, demonstrate average savings by 26.79% for the samples considered in this work, besides reduction in number of gates and input literals by 39.66% and 12.98% respectively, in comparison with other factored RM forms.

Increasing Value Added of Recycling Business Management: A Case of Thailand

This policy participation action research explores the roles of Thai government units during its 2010 fiscal year on how to create value added to recycling business in the central part of Thailand. The research aims to a) study how the government plays a role to support the business, and its problems and obstacles on supporting the business, b) to design a strategic action – short, medium, and long term plans -- to create value added to the recycling business, particularly in local full-loop companies/organizations licensed by Wongpanit Waste Separation Plant as well as those licensed by the Department of Provincial Administration. Mixed method research design, i.e., a combination of quantitative and qualitative methods is utilized in the present study in both data collection and analysis procedures. Quantitative data was analyzed by frequency, percent value, mean scores, and standard deviation, and aimed to note trend and generalizations. Qualitative data was collected via semi-structured interviews/focus group interviews to explore in-depth views of the operators. The sampling included 1,079 operators in eight provinces in the central part of Thailand.

Biodegradation of Carbazole By a Promising Gram-Negative Bacterium

In the present work we report a gram negative bacterial isolate, from soil of a dye industry, with promising biorefining and bioremediation potential. This isolate (GBS.5) could utilize carbazole (nitrogen containing polycyclic aromatic hydrocarbon) as the sole source of nitrogen and carbon and utilize almost 98% of 3mM carbazole in 100 hours. The specific activity of our GBS.5 isolate for carbazole degradation at 30°C and pH 7.0 was found to be 11.36 μmol/min/g dry cell weight as compared to 10.4 μmol/min/g dry cell weight, the highest reported specific activity till date. The presence of car genes (the genes involved in denitrogenation of carbazole) was confirmed through PCR amplification.

Gas Flaring in the Niger Delta Nigeria: An Act of Inhumanity to Man and His Environment

The Niger Delta Region of Nigeria is home to about 20 million people and 40 different ethnic groups. The region has an area of seventy thousand square kilometers (70,000 KM2) of wetlands, formed primarily by sediments deposition and makes up 7.5 percent of Nigeria's total landmass. The notable ecological zones in this region includes: coastal barrier islands; mangrove swamp forests; fresh water swamps; and lowland rainforests. This incredibly naturally-endowed ecosystem region, which contains one of the highest concentrations of biodiversity on the planet, in addition to supporting abundant flora and fauna, is threatened by the inhuman act known as gas flaring. Gas flaring is the combustion of natural gas that is associated with crude oil when it is pumped up from the ground. In petroleum-producing areas such as the Niger Delta region of Nigeria where insufficient investment was made in infrastructure to utilize natural gas, flaring is employed to dispose of this associated gas. This practice has impoverished the communities where it is practiced, with attendant environmental, economic and health challenges. This paper discusses the adverse environmental and health implication associated with the practice, the role of Government, Policy makers, Oil companies and the Local communities aimed at bring this inhuman practice to a prompt end.

In silico Simulations for DNA Shuffling Experiments

DNA shuffling is a powerful method used for in vitro evolute molecules with specific functions and has application in areas such as, for example, pharmaceutical, medical and agricultural research. The success of such experiments is dependent on a variety of parameters and conditions that, sometimes, can not be properly pre-established. Here, two computational models predicting DNA shuffling results is presented and their use and results are evaluated against an empirical experiment. The in silico and in vitro results show agreement indicating the importance of these two models and motivating the study and development of new models.

Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

Detection of Airborne Bacteria and Mildew in the Shanghai Metro System

This study aimed to detect and to identify the main strains of airborne microorganisms present in the Shanghai Metro system. Samples were collected using agar plates exposed to the air and microorganisms were identified using catalase, plasma coagulase and hymolytic analysis. The results show that the concentration of mildew present within a newly opened metro line was significantly higher than for other lines. Differences among underground and elevated stations can be attributed to differences in passenger flow and the environment surrounding the stations. Additionally, the investigation indicated that bacteria reached maximum levels at different times on weekdays and weekends. The bacteria in the Metro stations were identified as primarily Gram positive, consisting mainly of coagulase-negative staphylococcus strains (CNS).

Bootstrap and MLS Methods-based Individual Bioequivalence Assessment

It is a one-sided hypothesis testing process for assessing bioequivalence. Bootstrap and modified large-sample(MLS) methods are considered to study individual bioequivalence(IBE), type I error and power of hypothesis tests are simulated and compared with FDA(2001). The results show that modified large-sample method is equivalent to the method of FDA(2001) .

Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart

The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).

Effect of Fermentation Time on Xanthan Gum Production from Sugar Beet Molasses

Xanthan gum is a microbial polysaccharide of great commercial significance. The purpose of this study was to select the optimum fermentation time for xanthan gum production by Xanthomonas campestris (NRRL-B-1459) using 10% sugar beet molasses as a carbon source. The pre-heating of sugar beet molasses and the supplementation of the medium were investigated in order to improve xanthan gum production. Maximum xanthan gum production in fermentation media (9.02 g/l) was observed after 4 days shaking incubation at 25°C and 240 rpm agitation speed. A solution of 10% sucrose was used as a control medium. Results indicated that the optimum period for xanthan gum production in this condition was 4 days.

Paranoid Thoughts and Thought Control Strategies in a Nonclinical Population

Recently, it has been suggested that thought control strategies aimed at controlling unwanted thoughts may be used to cope with paranoid thoughts in both clinical and nonclinical samples. The current study aims to examine the type of thought control strategies that were associated with the frequency of paranoid thoughts in nonclinical samples. A total of 159 Japanese undergraduate students completed the two scales–the Paranoia Checklist and the Thought Control Questionnaire. A hierarchical multiple regression analysis demonstrated that worry-based control strategies were associated with paranoid thoughts, whereas distraction- and social-based control strategies were inversely associated with paranoid thoughts. Our findings suggest that in a nonclinical population, worry-based strategies may be especially maladaptive, whereas distraction- and social-based strategies may be adaptive to paranoid thoughts.

Effect of Boric Acid on a-Hydroxy Acids Compounds in Thin Layer Chromatography

In this investigation Salicylic acid, Sulfosalicylic acid and Acetyl salicylic acid were chosen as a sample for thin layer chromatography (TLC) on silica gel plates. Bicarbonate buffer at different pH containing different amounts of boric acid was applied as mobile phase. Specific interaction of these substances with boric acid has effect on Rf in thin layer chromatography. Regular and similar trend was observed in variations of Rf for mentioned compounds in TLC by altering of percentages of boric acid in mobile phase in pH range of 8-10. Also effect of organic solvent, mixture of water/ organic solvent and organic solvent containing boric acid as mobile phase was studied.

Air Quality in Sports Venues with Distinct Characteristics

In July 2012, an indoor/outdoor monitoring programme was undertaken in two university sports facilities: a fronton and a gymnasium. Comfort parameters (temperature, relative humidity, CO and CO2) and total volatile organic compounds (VOCs) were continuously monitored. Concentrations of NO2, carbonyl compounds and individual VOCs were obtained. Low volume samplers were used to collect particulate matter (PM10). The minimum ventilation rates stipulated for acceptable indoor air quality were observed in both sports facilities. It was found that cleaning activities may have a large influence on the VOC levels. Acrolein was one of the most abundant carbonyl compounds, showing concentrations above the recommended limit. Formaldehyde was detected at levels lower than those commonly reported for other indoor environments. The PM10 concentrations obtained during the occupancy periods ranged between 38 and 43μgm-3 in the fronton and from 154 to 198μgm-3 in the gymnasium.