Spatial Distribution of Cd, Zn and Hg in Groundwater at Rayong Province, Thailand

The objective of this study was to evaluate the distribution patterns of Cd, Zn and Hg in groundwater by geospatial interpolation. The study was performed at Rayong province in the eastern part of Thailand, with high agricultural and industrial activities. Groundwater samples were collected twice a year from 31 tubewells around this area. Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) was used to measure the concentrations of Cd, Zn, and Hg in groundwater samples. The results demonstrated that concentrations of Cd, Zn and Hg range from 0.000-0.297 mg/L (x = 0.021±0.033 mg/L), 0.022-33.236 mg/L (x = 4.214±4.766 mg/L) and 0.000-0.289 mg/L (x = 0.023±0.034 mg/L), respectively. Most of the heavy metals concentrations were exceeded groundwater quality standards as specified in the Ministry of Natural Resources and Environment, Thailand. The trend distribution of heavy metals were high concentrations at the southeastern part of the area that especially vulnerable to heavy metals and other contaminants.

Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm

This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.

Forecasting Stock Price Manipulation in Capital Market

The aim of the article is extending and developing econometrics and network structure based methods which are able to distinguish price manipulation in Tehran stock exchange. The principal goal of the present study is to offer model for approximating price manipulation in Tehran stock exchange. In order to do so by applying separation method a sample consisting of 397 companies accepted at Tehran stock exchange were selected and information related to their price and volume of trades during years 2001 until 2009 were collected and then through performing runs test, skewness test and duration correlative test the selected companies were divided into 2 sets of manipulated and non manipulated companies. In the next stage by investigating cumulative return process and volume of trades in manipulated companies, the date of starting price manipulation was specified and in this way the logit model, artificial neural network, multiple discriminant analysis and by using information related to size of company, clarity of information, ratio of P/E and liquidity of stock one year prior price manipulation; a model for forecasting price manipulation of stocks of companies present in Tehran stock exchange were designed. At the end the power of forecasting models were studied by using data of test set. Whereas the power of forecasting logit model for test set was 92.1%, for artificial neural network was 94.1% and multi audit analysis model was 90.2%; therefore all of the 3 aforesaid models has high power to forecast price manipulation and there is no considerable difference among forecasting power of these 3 models.

Pyrolysis Characteristics and Kinetics of Macroalgae Biomass Using Thermogravimetric Analyzer

The pyrolysis characteristics and kinetics of seven marine biomass, which are fixed Enteromorpha clathrata, floating Enteromorpha clathrata, Ulva lactuca L., Zosterae Marinae L., Thallus Laminariae, Asparagus schoberioides kunth and Undaria pinnatifida (Harv.), were studied with thermogravimetric analysis method. Simultaneously, cornstalk, which is a grass biomass, and sawdust, which is a lignocellulosic biomass, were references. The basic pyrolysis characteristics were studied by using TG- DTG-DTA curves. The results showed that there were three stages (dehydration, dramatic weight loss and slow weight loss) during the whole pyrolysis process of samples. The Tmax of marine biomass was significantly lower than two kinds of terrestrial biomass. Zosterae Marinae L. had a relatively high stability of pyrolysis, but floating Enteromorpha clathrata had lowest stability of pyrolysis and a good combustion characteristics. The corresponding activation energy E and frequency factor A were obtained by Coats-Redfern method. It was found that the pyrolysis reaction mechanism functions of three kinds of biomass are different.

Reproduction Performance of Etawah Cross Bred Goats in Estrus Synchronization by Controlled Internal Drug Release Implant and Pgf2α Continued by Artificial Insemination

The estrus female Etawah cross bred goats were synchronized estrus by controlled internal drug release (CIDR) implants for 10 days combined with PGF2α injection, and continued by artificial insemination (AI) within the hours of 24 period. Vaginal epithelium was taken to determine estrus cycle of the goats without estrus synchronization. The estrus responds (the puffy of vulva and vaginal pH) and percentage of pregnancy were investigated. The data were analyzed descriptively and Independent Sample T-Test. The results showed that the puffy of vulva and vaginal pH were significantly different in synchronized estrus goats and control goats (2.18 ± 0.33 cm vs. 1.20 ± 0.16 cm and 8.55 ± 0.63 vs. 8.22 ± 0.22). Percentage of pregnancy was higher in synchronized estrus goats (73.33%) than in control (53.3%). Estrus synchronization by using CIDR implants and PGF2, continued by AI was effective to improve reproduction performance of Etawah cross bred goats.

High Resolution Images: Segmenting, Extracting Information and GIS Integration

As the world changes more rapidly, the demand for update information for resource management, environment monitoring, planning are increasing exponentially. Integration of Remote Sensing with GIS technology will significantly promote the ability for addressing these concerns. This paper presents an alternative way of update GIS applications using image processing and high resolution images. We show a method of high-resolution image segmentation using graphs and morphological operations, where a preprocessing step (watershed operation) is required. A morphological process is then applied using the opening and closing operations. After this segmentation we can extract significant cartographic elements such as urban areas, streets or green areas. The result of this segmentation and this extraction is then used to update GIS applications. Some examples are shown using aerial photography.

Does Labour Supply Respond to Globalisation? Malaysia Evidence from Micro Data

Globalisation is a phenomenon that cannot be avoided. As globalisation allowed free flow of inputs including labour, it may affect job opportunities for the locals. Therefore, investigate the determinants of labour supply is essential in understanding the structure of labour market in the new era of globalization. The objective of this article is to examine labour supply by taking into account the globalisation effect. The study covers 3885 households in Peninsular Malaysia who are chosen using stratified random sampling. The labour supply model will be the basis for the analysis. The basic labour supply determinants are own wage and non-labour income. However, the extended labour supply model incorporates other variables like spouse wage,number of children and individuals characteristics like education level and age. Besides, the globalization indicator will also be incorporated as another independent variable.

Perceptual Framework for a Modern Left-Turn Collision Warning System

Most of the collision warning systems currently available in the automotive market are mainly designed to warn against imminent rear-end and lane-changing collisions. No collision warning system is commercially available to warn against imminent turning collisions at intersections, especially for left-turn collisions when a driver attempts to make a left-turn at either a signalized or non-signalized intersection, conflicting with the path of other approaching vehicles traveling on the opposite-direction traffic stream. One of the major factors that lead to left-turn collisions is the human error and misjudgment of the driver of the turning vehicle when perceiving the speed and acceleration of other vehicles traveling on the opposite-direction traffic stream; therefore, using a properly-designed collision warning system will likely reduce, or even eliminate, this type of collisions by reducing human error. This paper introduces perceptual framework for a proposed collision warning system that can detect imminent left-turn collisions at intersections. The system utilizes a commercially-available detection sensor (either a radar sensor or a laser detector) to detect approaching vehicles traveling on the opposite-direction traffic stream and calculate their speeds and acceleration rates to estimate the time-tocollision and compare that time to the time required for the turning vehicle to clear the intersection. When calculating the time required for the turning vehicle to clear the intersection, consideration is given to the perception-reaction time of the driver of the turning vehicle, which is the time required by the driver to perceive the message given by the warning system and react to it by engaging the throttle. A regression model was developed to estimate perception-reaction time based on age and gender of the driver of the host vehicle. Desired acceleration rate selected by the driver of the turning vehicle, when making the left-turn movement, is another human factor that is considered by the system. Another regression model was developed to estimate the acceleration rate selected by the driver of the turning vehicle based on driver-s age and gender as well as on the location and speed of the nearest approaching vehicle along with the maximum acceleration rate provided by the mechanical characteristics of the turning vehicle. By comparing time-to-collision with the time required for the turning vehicle to clear the intersection, the system displays a message to the driver of the turning vehicle when departure is safe. An application example is provided to illustrate the logic algorithm of the proposed system.

Denosing ECG using Translation Invariant Multiwavelet

In this paper, we propose a method to reduce the various kinds of noise while gathering and recording the electrocardiogram (ECG) signal. Because of the defects of former method in the noise elimination of ECG signal, we use translation invariant (TI) multiwavelet denoising method to the noise elimination. The advantage of the proposed method is that it may not only remain the geometrical characteristics of the original ECG signal and keep the amplitudes of various ECG waveforms efficiently, but also suppress impulsive noise to some extent. The simulation results indicate that the proposed method are better than former removing noise method in aspects of remaining geometrical characteristics of ECG signal and the signal-to-noise ratio (SNR).

Transformation of Course Timetablinng Problem to RCPSP

The Resource-Constrained Project Scheduling Problem (RCPSP) is concerned with single-item or small batch production where limited resources have to be allocated to dependent activities over time. Over the past few decades, a lot of work has been made with the use of optimal solution procedures for this basic problem type and its extensions. Brucker and Knust[1] discuss, how timetabling problems can be modeled as a RCPSP. Authors discuss high school timetabling and university course timetabling problem as an example. We have formulated two mathematical formulations of course timetabling problem in a new way which are the prototype of single-mode RCPSP. Our focus is to show, how course timetabling problem can be transformed into RCPSP. We solve this transformation model with genetic algorithm.

Negative Slope Ramp Carrier Control for High Power Factor Boost Converters in CCM Operation

This paper, a simple continuous conduction mode (CCM) pulse-width-modulated (PWM) controller for high power factor boost converters is introduced. The duty ratios were obtained by the comparison of a sensed signal from inductor current or switch current and a negative slope ramp carrier waveform in each switching period. Due to the proposed control requires only the inductor current or switch current sensor and the output voltage sensor, its circuit implementation was very simple. To verify the proposed control, the circuit experimentation of a 350 W boost converter with the proposed control was applied. From the results, the input current waveform was shaped to be closely sinusoidal, implying high power factor and low harmonics.

Landscape Data Transformation: Categorical Descriptions to Numerical Descriptors

Categorical data based on description of the agricultural landscape imposed some mathematical and analytical limitations. This problem however can be overcome by data transformation through coding scheme and the use of non-parametric multivariate approach. The present study describes data transformation from qualitative to numerical descriptors. In a collection of 103 random soil samples over a 60 hectare field, categorical data were obtained from the following variables: levels of nitrogen, phosphorus, potassium, pH, hue, chroma, value and data on topography, vegetation type, and the presence of rocks. Categorical data were coded, and Spearman-s rho correlation was then calculated using PAST software ver. 1.78 in which Principal Component Analysis was based. Results revealed successful data transformation, generating 1030 quantitative descriptors. Visualization based on the new set of descriptors showed clear differences among sites, and amount of variation was successfully measured. Possible applications of data transformation are discussed.

Kinetics Study of Ammonia Removal from Synthetic Waste Water

The aim of this study was to investigate ammonium exchange capacity of natural and activated clinoptilolite from Kwazulu-Natal Province, South Africa. X – ray fluorescence (XRF) analysis showed that the clinoptilolite contained exchangeable ions of sodium, potassium, calcium and magnesium. This analysis also confirmed that the zeolite sample had a high silicon composition compared to aluminium. Batch equilibrium studies were performed in an orbital shaker and the data fitted the Langmuir isotherm very well. The ammonium exchange capacity was found to increase with pH and temperature. Clinoptilolite functionalization with hydrochloric acid increased its ammonia uptake ability.

Transient Stability Assessment Using Fuzzy SVM and Modified Preventive Control

Transient Stability is an important issue in power systems planning, operation and extension. The objective of transient stability analysis problem is not satisfied with mere transient instability detection or evaluation and it is most important to complement it by defining fast and efficient control measures in order to ensure system security. This paper presents a new Fuzzy Support Vector Machines (FSVM) to investigate the stability status of power systems and a modified generation rescheduling scheme to bring back the identified unstable cases to a more economical and stable operating point. FSVM improves the traditional SVM (Support Vector Machines) by adding fuzzy membership to each training sample to indicate the degree of membership of this sample to different classes. The preventive control based on economic generator rescheduling avoids the instability of the power systems with minimum change in operating cost under disturbed conditions. Numerical results on the New England 39 bus test system show the effectiveness of the proposed method.

Suitability of Entry into the Euro Area: An Excursion in Selected Economies

The current situation in the eurozone raises a number of topics for discussion and to help in finding an answer to the question of whether a common currency is a more suitable means of coping with the impact of the financial crisis or whether national currencies are better suited to this. The economic situation in the EU is now considerably volatile and, due to problems with the fulfilment of the Maastricht convergence criteria, it is now being considered whether, in their further development, new member states will decide to distance themselves from the euro or will, in an attempt to overcome the crisis, speed up the adoption of the euro. The Czech Republic is one country with little interest in adopting the euro, justified by the fact that a better alternative to dealing with this crisis is an independent monetary policy and its ability to respond flexibly to the economic situation not only in Europe, but around the world. One attribute of the crisis in the Czech Republic and its mitigation is the freely floating exchange rate of the national currency. It is not only the Czech Republic that is attempting to alleviate the impact of the crisis, but also new EU member countries facing fresh questions to which theory have yet to provide wholly satisfactory answers. These questions undoubtedly include the problem of inflation targeting and the choice of appropriate instruments for achieving financial stability. The difficulty lies in the fact that these objectives may be contradictory and may require more than one means of achieving them. In this respect we may assume that membership of the euro zone might not in itself mitigate the development of the recession or protect the nation from future crises. We are of the opinion that the decisive factor in the development of any economy will continue to be the domestic economic policy and the operability of market economic mechanisms. We attempt to document this fact using selected countries as examples, these being the Czech Republic, Poland, Hungary, and Slovakia.

Rheological Behaviors of Crude Oil in the Presence of Water

The rheological properties of light crude oil and its mixture with water were investigated experimentally. These rheological properties include steady flow behavior, yield stress, transient flow behavior, and viscoelastic behavior. A RheoStress RS600 rheometer was employed in all of the rheological examination tests. The light crude oil exhibits a Newtonian and for emulsion exhibits a non-Newtonian shear thinning behavior over the examined shear rate range of 0.1–120 s-1. In first time, a series of samples of crude oil from the Algerian Sahara has been tested and the results expressed in terms of τ=f(γ) have demonstrated their Newtonian character for the temperature included in [20°C, 70°C]. In second time and at T=20°C, the oil-water emulsions (30%, 50% and 70%) by volume of water), thermodynamically stable, have demonstrated a non-Newtonian rheological behavior that is to say, Herschel-Bulkley and Bingham types. For each type of crude oil-water emulsion, the rheological parameters are calculated by numerical treatment of results.

Stress Analysis of Non-persistent Rock Joints under Biaxial Loading

Two-dimensional finite element model was created in this work to investigate the stresses distribution within rock-like samples with offset open non-persistent joints under biaxial loading. The results of this study have explained the fracture mechanisms observed in tests on rock-like material with open non-persistent offset joints [1]. Finite element code SAP2000 was used to study the stresses distribution within the specimens. Four-nodded isoperimetric plain strain element with two degree of freedom per node, and the three-nodded constant strain triangular element with two degree of freedom per node were used in the present study.The results of the present study explained the formation of wing cracks at the tip of the joints for low confining stress as well as the formation of wing cracks at the middle of the joint for the higher confining stress. High shear stresses found in the numerical study at the tip of the joints explained the formation of secondary cracks at the tip of the joints in the experimental study. The study results coincide with the experimental observations which showed that for bridge inclination of 0o, the coalescence occurred due to shear failure and for bridge inclination of 90o the coalescence occurred due to tensile failure while for the other bridge inclinations coalescence occurred due to mixed tensile and shear failure.

Processing the Medical Sensors Signals Using Fuzzy Inference System

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor

In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.

The Dividend Payments for General Claim Size Distributions under Interest Rate

This paper evaluates the dividend payments for general claim size distributions in the presence of a dividend barrier. The surplus of a company is modeled using the classical risk process perturbed by diffusion, and in addition, it is assumed to accrue interest at a constant rate. After presenting the integro-differential equation with initial conditions that dividend payments satisfies, the paper derives a useful expression of the dividend payments by employing the theory of Volterra equation. Furthermore, the optimal value of dividend barrier is found. Finally, numerical examples illustrate the optimality of optimal dividend barrier and the effects of parameters on dividend payments.