UD Covariance Factorization for Unscented Kalman Filter using Sequential Measurements Update

Extended Kalman Filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, not only it has difficulties arising from linearization but also many times it becomes numerically unstable because of computer round off errors that occur in the process of its implementation. To overcome linearization limitations, the unscented transformation (UT) was developed as a method to propagate mean and covariance information through nonlinear transformations. Kalman filter that uses UT for calculation of the first two statistical moments is called Unscented Kalman Filter (UKF). Square-root form of UKF (SRUKF) developed by Rudolph van der Merwe and Eric Wan to achieve numerical stability and guarantee positive semi-definiteness of the Kalman filter covariances. This paper develops another implementation of SR-UKF for sequential update measurement equation, and also derives a new UD covariance factorization filter for the implementation of UKF. This filter is equivalent to UKF but is computationally more efficient.

Multiple Subcarrier Indoor Geolocation System in MIMO-OFDM WLAN APs Structure

This report aims to utilize existing and future Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing Wireless Local Area Network (MIMO-OFDM WLAN) systems characteristics–such as multiple subcarriers, multiple antennas, and channel estimation characteristics–for indoor location estimation systems based on the Direction of Arrival (DOA) and Radio Signal Strength Indication (RSSI) methods. Hybrid of DOA-RSSI methods also evaluated. In the experimental data result, we show that location estimation accuracy performances can be increased by minimizing the multipath fading effect. This is done using multiple subcarrier frequencies over wideband frequencies to estimate one location. The proposed methods are analyzed in both a wide indoor environment and a typical room-sized office. In the experiments, WLAN terminal locations are estimated by measuring multiple subcarriers from arrays of three dipole antennas of access points (AP). This research demonstrates highly accurate, robust and hardware-free add-on software for indoor location estimations based on a MIMO-OFDM WLAN system.

The Effects of Neuromuscular Training on Limits of Stability in Female Individuals

This study examined the effects of neuromuscular training (NT) on limits of stability (LOS) in female individuals. Twenty female basketball amateurs were assigned into NT experimental group or control group by volunteer. All the players were underwent regular basketball practice, 90 minutes, 3 times per week for 6 weeks, but the NT experimental group underwent extra NT with plyometric and core training, 50 minutes, 3 times per week for 6 weeks during this period. Limits of stability (LOS) were evaluated by the Biodex Balance System. One factor ANCOVA was used to examine the differences between groups after training. The significant level for statistic was set at p

Protein-Protein Interaction Detection Based on Substring Sensitivity Measure

Detecting protein-protein interactions is a central problem in computational biology and aberrant such interactions may have implicated in a number of neurological disorders. As a result, the prediction of protein-protein interactions has recently received considerable attention from biologist around the globe. Computational tools that are capable of effectively identifying protein-protein interactions are much needed. In this paper, we propose a method to detect protein-protein interaction based on substring similarity measure. Two protein sequences may interact by the mean of the similarities of the substrings they contain. When applied on the currently available protein-protein interaction data for the yeast Saccharomyces cerevisiae, the proposed method delivered reasonable improvement over the existing ones.

Migration and Accumulation of Artificial Radionuclides in the System Water-Soil-Plants Depending on Polymers Applying

The possibility of radionuclides-related contamination of lands at agricultural holdings defines the necessity to apply special protective measures in plant growing. The aim of researches is to elucidate the influence of polymers applying on biological migration of man-made anthropogenic radionuclides 90Sr and 137Cs in the system water - soil – plant. The tests are being carried out under field conditions with and without application of polymers in root-inhabited media in more radioecological tension zone (with the radius of 7 km from the Armenian Nuclear Power Plant). The polymers on the base of K+, Caµ, KµCaµ ions were tested. Productivity of pepper depending on the presence and type of polymer material, content of artificial radionuclides in waters, soil and plant material has been determined. The character of different polymers influence on the artificial radionuclides migration and accumulation in the system water-soil-plant and accumulation in the plants has been cleared up.

Optimization of Process Parameters of Pressure Die Casting using Taguchi Methodology

The present work analyses different parameters of pressure die casting to minimize the casting defects. Pressure diecasting is usually applied for casting of aluminium alloys. Good surface finish with required tolerances and dimensional accuracy can be achieved by optimization of controllable process parameters such as solidification time, molten temperature, filling time, injection pressure and plunger velocity. Moreover, by selection of optimum process parameters the pressure die casting defects such as porosity, insufficient spread of molten material, flash etc. are also minimized. Therefore, a pressure die casting component, carburetor housing of aluminium alloy (Al2Si2O5) has been considered. The effects of selected process parameters on casting defects and subsequent setting of parameters with the levels have been accomplished by Taguchi-s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L18 orthogonal array. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the percent contribution of different process parameters. Confidence interval has also been estimated for 95% consistency level and three conformational experiments have been performed to validate the optimum level of different parameters. Overall 2.352% reduction in defects has been observed with the help of suggested optimum process parameters.

MONARC: A Case Study on Simulation Analysis for LHC Activities

The scale, complexity and worldwide geographical spread of the LHC computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide area network bandwidth available. We present the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large scale distributed systems applied to HEP experiments. We present simulation experiments designed to evaluate the capabilities of the current real-world distributed infrastructure to support existing physics analysis processes and the means by which the experiments bands together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis within the CMS experiment.

The Influence of Mobile Phone's Forms in the User Perception

Not all types of mobile phone are successful in entering the market because some types of the mobile phone have a negative perception of user. Therefore, it is important to understand the influence of mobile phone's characteristics in the local user perception. This research investigates the influence of QWERTY mobile phone's forms in the perception of Indonesian user. First, some alternatives of mobile phone-s form are developed based on a certain number of mobile phone's models. At the second stage, some word pairs as design attributes of the mobile phone are chosen to represent the user perception of mobile phone. At the final stage, a survey is conducted to investigate the influence of the developed form alternatives to the user perception. Based on the research, users perceive mobile phone's form with curved top and straight bottom shapes and mobile phone's form with slider and antenna as the most negative form. Meanwhile, mobile phone's form with curved top and bottom shapes and mobile phone-s form without slider and antenna are perceived by the user as the most positive form.

A Quantitative Tool for Analyze Process Design

Some quality control tools use non metric subjective information coming from experts, who qualify the intensity of relations existing inside processes, but without quantifying them. In this paper we have developed a quality control analytic tool, measuring the impact or strength of the relationship between process operations and product characteristics. The tool includes two models: a qualitative model, allowing relationships description and analysis; and a formal quantitative model, by means of which relationship quantification is achieved. In the first one, concepts from the Graphs Theory were applied to identify those process elements which can be sources of variation, that is, those quality characteristics or operations that have some sort of prelacy over the others and that should become control items. Also the most dependent elements can be identified, that is those elements receiving the effects of elements identified as variation sources. If controls are focused in those dependent elements, efficiency of control is compromised by the fact that we are controlling effects, not causes. The second model applied adapts the multivariate statistical technique of Covariance Structural Analysis. This approach allowed us to quantify the relationships. The computer package LISREL was used to obtain statistics and to validate the model.

Optical 3D-Surface Reconstruction of Weak Textured Objects Based on an Approach of Disparity Stereo Inspection

Optical 3D measurement of objects is meaningful in numerous industrial applications. In various cases shape acquisition of weak textured objects is essential. Examples are repetition parts made of plastic or ceramic such as housing parts or ceramic bottles as well as agricultural products like tubers. These parts are often conveyed in a wobbling way during the automated optical inspection. Thus, conventional 3D shape acquisition methods like laser scanning might fail. In this paper, a novel approach for acquiring 3D shape of weak textured and moving objects is presented. To facilitate such measurements an active stereo vision system with structured light is proposed. The system consists of multiple camera pairs and auxiliary laser pattern generators. It performs the shape acquisition within one shot and is beneficial for rapid inspection tasks. An experimental setup including hardware and software has been developed and implemented.

Hybrid TOA/AOA Schemes for Mobile Location in Cellular Communication Systems

Wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. When fewer base stations (BSs) may be available for location purposes or the measurements with large errors in non-line-of-sight (NLOS) environments, it is necessary to integrate all available heterogeneous measurements to achieve high location accuracy. This paper illustrates a hybrid proposed schemes that combine time of arrival (TOA) at three BSs and angle of arrival (AOA) information at the serving BS to give a location estimate of the MS. The proposed schemes mitigate the NLOS effect simply by the weighted sum of the intersections between three TOA circles and the AOA line without requiring a priori information about the NLOS error. Simulation results show that the proposed methods can achieve better accuracy when compare with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).

A Systematic Method for Performance Analysis of SOA Applications

The successful implementation of Service-Oriented Architecture (SOA) is not confined to Information Technology systems and required changes of the whole enterprise. In order to adapt IT and business, the enterprise requires adequate and measurable methods. The adoption of SOA creates new problem with regard to measuring and analysis the performance. In fact the enterprise should investigate to what extent the development of services will increase the value of business. It is required for every business to measure the extent of SOA adaptation with the goals of enterprise. Moreover, precise performance metrics and their combination with the advanced evaluation methodologies as a solution should be defined. The aim of this paper is to present a systematic methodology for designing a measurement system at the technical and business levels, so that: (1) it will determine measurement metrics precisely (2) the results will be analysed by mapping identified metrics to the measurement tools.

The Organizational Innovativeness of Public-Listed Housing Developers

This paper investigated the organizational innovativeness of public listed housing developers in Malaysia. We conceptualized organizational innovativeness as a multi-dimensional construct consisting of 5 dimensions: market innovativeness, product innovativeness, process innovativeness, behavior innovativeness and strategic innovativeness. We carried out questionnaire survey with all accessible public listed developers in Malaysia and received a 56 percent response. We found that the innovativeness of public listed housing developers is low. The study extends the knowledge on innovativeness theory by using a multi-dimensional contructs to conceptualize the innovativeness of public listed housing developers in Malaysia where all this while most studies focused on single dimensional construct of innovativeness. The paper ends by providing some explanations for the results.

Shape Memory alloy Actuator System Optimization for New Hand Prostheses

Shape memory alloy (SMA) actuators have found a wide range of applications due to their unique properties such as high force, small size, lightweight and silent operation. This paper presents the development of compact (SMA) actuator and cooling system in one unit. This actuator is developed for multi-fingered hand. It consists of nickel-titanium (Nitinol) SMA wires in compact forming. The new arrangement insulates SMA wires from the human body by housing it in a heat sink and uses a thermoelectric device for rejecting heat to improve the actuator performance. The study uses optimization methods for selecting the SMA wires geometrical parameters and the material of a heat sink. The experimental work implements the actuator prototype and measures its response.

Investigation of Drying Kinetics of Viscose Yarn Bobbins

This study is concerned with the investigation of the suitability of several empirical and semi-empirical drying models available in the literature to define drying behavior of viscose yarn bobbins. For this purpose, firstly, experimental drying behaviour of viscose bobbins was determined on an experimental dryer setup which was designed and manufactured based on hot-air bobbin dryers used in textile industry. Afterwards, drying models considered were fitted to the experimentally obtained moisture ratios. Drying parameters were drying temperature and bobbin diameter. The fit was performed by selecting the values for constants in the models in such a way that these values make the sum of the squared differences between the experimental and the model results for moisture ratio minimum. Suitability of fitting was specified as comparing the correlation coefficient, standard error and mean square deviation. The results show that the most appropriate model in describing the drying curves of viscose bobbins is the Page model.

Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Effect of S-Girdling on Fruit Growth and Fruit Quality of Wax Apple

The study was performed to evaluate the effect of Sgirdling, fruit thinning plus bagging with 2,4-D application, fruit thinning plus bagging on growth and quality of wax apple fruit. Girdling was applied three week before flowering. The 2,4-D was sprayed at the small bud and petal fall stage. The effect of all treatments on fruit growth was measured weekly. The physical and biochemical quality characteristics of the fruits were recorded. The results showed that no significant effect on number of bud among treatments. S-girdling, 2,4-D application produced the lowest bud drop, fruit drop compared to untreated control. Moreover, S-girdling enhanced faster fruit growth producing the best final fruit length and diameter than the control treatment. It was also observed that Sgirdling greatly increased fruit set, fruit weight as well as total soluble solid, reduced fruit crack, and titratable acidity. In conclusion, S-girdling had a distinctive and significant effect on most of the fruit quality characteristics assessed. Application 2,4-D was also recommended as the industry norm to increase fruit set, and fruit quality in wax apple.

The Optimal Design for Grip Force of Material Handling

Applied a mouse-s roller with a gripper to increase the efficiency for a gripper can learn to a material handling without slipping. To apply a gripper, we use the optimize principle to develop material handling by use a signal for checking a roller mouse that rotate or not. In case of the roller rotates means that the material slips. A gripper will slide to material handling until the roller will not rotate. As this experiment has test material handling for comparing a grip force that uses to material handling of the 10-human with the applied gripper. We can summarize that human exert the material handling more than the applied gripper. Because of the gripper can exert more befit to material handling than human and may be a minimum force to lift a material without slipping.

LOWL: Logic and OWL, an Extension

Current research on semantic web aims at making intelligent web pages meaningful for machines. In this way, ontology plays a primary role. We believe that logic can help ontology languages (such as OWL) to be more fluent and efficient. In this paper we try to combine logic with OWL to reduce some disadvantages of this language. Therefore we extend OWL by logic and also show how logic can satisfy our future expectations of an ontology language.

Using the V-Sphere Code for the Passive Scalar in the Wake of a Bluff Body

The objective of this research was to find the diffusion properties of vehicles on the road by using the V-Sphere Code. The diffusion coefficient and the size of the height of the wake were estimated with the LES option and the third order MUSCL scheme. We evaluated the code with the changes in the moments of Reynolds Stress along the mean streamline. The results show that at the leading part of a bluff body the LES has some advantages over the RNS since the changes in the strain rates are larger for the leading part. We estimated that the diffusion coefficient with the computed Reynolds stress (non-dimensional) was about 0.96 times the mean velocity.