Experimental Studies on Multiphase Flow in Porous Media and Pore Wettability

Multiphase flow transport in porous medium is very common and significant in science and engineering applications. For example, in CO2 Storage and Enhanced Oil Recovery processes, CO2 has to be delivered to the pore spaces in reservoirs and aquifers. CO2 storage and enhance oil recovery are actually displacement processes, in which oil or water is displaced by CO2. This displacement is controlled by pore size, chemical and physical properties of pore surfaces and fluids, and also pore wettability. In this study, a technique was developed to measure the pressure profile for driving gas/liquid to displace water in pores. Through this pressure profile, the impact of pore size on the multiphase flow transport and displacement can be analyzed. The other rig developed can be used to measure the static and dynamic pore wettability and investigate the effects of pore size, surface tension, viscosity and chemical structure of liquids on pore wettability.

Corporate Credit Rating using Multiclass Classification Models with order Information

Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.

Kalman-s Shrinkage for Wavelet-Based Despeckling of SAR Images

In this paper, a new probability density function (pdf) is proposed to model the statistics of wavelet coefficients, and a simple Kalman-s filter is derived from the new pdf using Bayesian estimation theory. Specifically, we decompose the speckled image into wavelet subbands, we apply the Kalman-s filter to the high subbands, and reconstruct a despeckled image from the modified detail coefficients. Experimental results demonstrate that our method compares favorably to several other despeckling methods on test synthetic aperture radar (SAR) images.

An Experimental Study on the Effect of Premixed and Equivalence Ratios on CO and HC Emissions of Dual Fuel HCCI Engine

In this study, effects of premixed and equivalence ratios on CO and HC emissions of a dual fuel HCCI engine are investigated. Tests were conducted on a single-cylinder engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature results in better HCCI combustion due to formation of a homogeneous mixture, therefore, all tests were carried out over the optimum intake temperature of 110-115 ºC. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge and plays an important role in HCCI combustion phasing. Experiments indicated 35 BTDC as the optimum injection timing. Varying the coolant temperature in a range of 40 to 70 ºC, better HCCI combustion was achieved at 50 ºC. Therefore, coolant temperature was maintained 50 ºC during all tests. Simultaneous investigation of effective parameters on HCCI combustion was conducted to determine optimum parameters resulting in fast transition to HCCI combustion. One of the advantages of the method studied in this study is feasibility of easy and fast transition of typical diesel engine to a dual fuel HCCI engine. Results show that increasing premixed ratio, while keeping EGR rate constant, increases unburned hydrocarbon (UHC) emissions due to quenching phenomena and trapping of premixed fuel in crevices, but CO emission decreases due to increase in CO to CO2 reactions.

Bandwidth Estimation Algorithms for the Dynamic Adaptation of Voice Codec

In the recent years multimedia traffic and in particular VoIP services are growing dramatically. We present a new algorithm to control the resource utilization and to optimize the voice codec selection during SIP call setup on behalf of the traffic condition estimated on the network path. The most suitable methodologies and the tools that perform realtime evaluation of the available bandwidth on a network path have been integrated with our proposed algorithm: this selects the best codec for a VoIP call in function of the instantaneous available bandwidth on the path. The algorithm does not require any explicit feedback from the network, and this makes it easily deployable over the Internet. We have also performed intensive tests on real network scenarios with a software prototype, verifying the algorithm efficiency with different network topologies and traffic patterns between two SIP PBXs. The promising results obtained during the experimental validation of the algorithm are now the basis for the extension towards a larger set of multimedia services and the integration of our methodology with existing PBX appliances.

Multi-Context Recurrent Neural Network for Time Series Applications

this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.

Effect of Twelve Weeks Brisk Walking on Blood Pressure, Body Mass Index, and Anthropometric Circumference of Obese Males

Introduction: Obesity is a major health risk issue in the present day of life for one and all globally. Obesity is one of the major concerns for public health according to recent increasing trends in obesity-related diseases such as Type 2 diabetes. ( Kazuya, 1994).and hyperlipidemia, (Sakata,1990) .which are more prevalent in Japanese adults with body mass index (BMI) values Z25 kg/m2.( Japanese Ministry of Health and Welfare,1997). The purpose of the study was to assess the effect of twelve weeks of brisk walking on blood pressure and body mass index, anthropometric measurements of obese males. Method: Thirty obese (BMI= above 30) males, aged 18 to 22 years, were selected from King Fahd University of Petroleum & Minerals, Saudi Arabia. The subject-s height (cm) was measured using a stadiometer and body mass (kg) was measured with a electronic weighing machine. BMI was subsequently calculated (kg/m2). The blood pressure was measured with standardized sphygmomanometer in mm of Hg. All the measurements were taken twice before and twice after the experimental period. The pre and post anthropometric measurements of waist and hip circumference were measured with the steel tape in cm. The subjects underwent walking schedule two times in a week for 12 weeks. The 45 minute sessions of brisk walking were undertaken at an average intensity of 65% to 85% of maximum HR (HRmax; calculated as 220-age). Results & Discussion: Statistical findings revealed significant changes from pre test to post test in case of both systolic blood pressure and diastolic blood pressure in the walking group. Results also showed significant decrease in their body mass index and anthropometric measurements i.e. (waist & hip circumference). Conclusion: It was concluded that twelve weeks brisk walking is beneficial for lowering of blood pressure, body mass index, and anthropometric circumference of obese males.

Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator

Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.

New Enhanced Hexagon-Based Search Using Point-Oriented Inner Search for Fast Block Motion Estimation

Recently, an enhanced hexagon-based search (EHS) algorithm was proposed to speedup the original hexagon-based search (HS) by exploiting the group-distortion information of some evaluated points. In this paper, a second version of the EHS is proposed with a new point-oriented inner search technique which can further speedup the HS in both large and small motion environments. Experimental results show that the enhanced hexagon-based search version-2 (EHS2) is faster than the HS up to 34% with negligible PSNR degradation.

An Example of Open Robot Controller Architecture - For Power Distribution Line Maintenance Robot System -

In this paper, we propose an architecture for easily constructing a robot controller. The architecture is a multi-agent system which has eight agents: the Man-machine interface, Task planner, Task teaching editor, Motion planner, Arm controller, Vehicle controller, Vision system and CG display. The controller has three databases: the Task knowledge database, the Robot database and the Environment database. Based on this controller architecture, we are constructing an experimental power distribution line maintenance robot system and are doing the experiment for the maintenance tasks, for example, “Bolt insertion task".

CFD Simulation and Validation of Flap Type Wave-Maker

A general purpose viscous flow solver Ansys CFX was used to solve the unsteady three-dimensional (3D) Reynolds Averaged Navier-Stokes Equation (RANSE) for simulating a 3D numerical viscous wave tank. A flap-type wave generator was incorporated in the computational domain to generate the desired incident waves. Authors have made effort to study the physical behaviors of Flap type wave maker with governing parameters. Dependency of the water fill depth, Time period of oscillations and amplitude of oscillations of flap were studied. Effort has been made to establish relations between parameters. A validation study was also carried out against CFD methodology with wave maker theory. It has been observed that CFD results are in good agreement with theoretical results. Beaches of different slopes were introduced to damp the wave, so that it should not cause any reflection from boundary. As a conclusion this methodology can simulate the experimental wave-maker for regular wave generation for different wave length and amplitudes.

Experimental and Theoretical Investigation of Rough Rice Drying in Infrared-assisted Hot Air Dryer Using Artificial Neural Network

Drying characteristics of rough rice (variety of lenjan) with an initial moisture content of 25% dry basis (db) was studied in a hot air dryer assisted by infrared heating. Three arrival air temperatures (30, 40 and 500C) and four infrared radiation intensities (0, 0.2 , 0.4 and 0.6 W/cm2) and three arrival air speeds (0.1, 0.15 and 0.2 m.s-1) were studied. Bending strength of brown rice kernel, percentage of cracked kernels and time of drying were measured and evaluated. The results showed that increasing the drying arrival air temperature and radiation intensity of infrared resulted decrease in drying time. High bending strength and low percentage of cracked kernel was obtained when paddy was dried by hot air assisted infrared dryer. Between this factors and their interactive effect were a significant difference (p

Investigation of Anti-Inflammatory, Antipyretic and Analgesic Effect of Yemeni Sidr Honey

Traditionally, Yemini Sidr honey has been reported to cure liver problems, stomach ulcers, and respiratory disorders. In this experiment, we evaluated Yemeni Sidr honey for its ability to protect inflammations caused by acetic acid and formalin -induced writhing, carrageenan and histamine-induced paw oedema in experimental rat model. Hyperpyrexia, membrane stabilizing activity, and phytochemical screening of the honey was also examined. Yemini Sidr Honey at (100, 200 and 500 mg/kg) exhibited a concentration dependant inhibition of acetic acid induced and formalin induced writhing, paw oedema induced by carrageenan & histamine, and hyperpyrexia induced by brewer's yeast, it also inhibited membrane stabilizing activity. Phytochemical screenings of the honey reveal the presence of flavonoids, steroid, alkaloids, saponins and tannins. This study suggested that Yemeni Sidr honey possess very strong antiinflammatory, analgesic and antipyretic effects and these effects would be a result of the phytochemicals present.

PET/CT Patient Dosage Assay

A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.

A FEM Study of Explosive Welding of Double Layer Tubes

Explosive welding is a process which uses explosive detonation to move the flyer plate material into the base material to produce a solid state joint. Experimental tests have been carried out by other researchers; have been considered to explosively welded aluminium 7039 and steel 4340 tubes in one step. The tests have been done using various stand-off distances and explosive ratios. Various interface geometries have been obtained from these experiments. In this paper, all the experiments carried out were simulated using the finite element method. The flyer plate and collision velocities obtained from the analysis were validated by the pin-measurement experiments. The numerical results showed that very high localized plastic deformation produced at the bond interface. The Ls_dyna_971 FEM has been used for all simulation process.

Durability of LDPE Geomembrane within Sealing System of MSW (Landfill)

Analyse of locally manufactured Low Density Polyethylene (LDPE) durability, used within lining systems at bottom of Municipal Solid Waste (landfill), is done in the present work. For this end, short and middle time creep behavior under tension of the analyzed material is carried out. The locally manufactured material is tested and compared to the European one (LDPE-CE). Both materials was tested in 03 various mediums: ambient and two aggressive (salty water and foam water), using three specimens in each case. A testing campaign is carried out using an especially designed and achieved testing bench. Moreover, characterisation tests were carried out to evaluate the medium effect on the mechanical properties of the tested material (LDPE). Furthermore, experimental results have been used to establish a law regression which can be used to predict creep behaviour of the analyzed material. As a result, the analyzed LDPE material has showed a good stability in different ambient and aggressive mediums; as well, locally manufactured LDPE seems more flexible, compared with the European one. This makes it more useful to the desired application.

XML Schema Automatic Matching Solution

Schema matching plays a key role in many different applications, such as schema integration, data integration, data warehousing, data transformation, E-commerce, peer-to-peer data management, ontology matching and integration, semantic Web, semantic query processing, etc. Manual matching is expensive and error-prone, so it is therefore important to develop techniques to automate the schema matching process. In this paper, we present a solution for XML schema automated matching problem which produces semantic mappings between corresponding schema elements of given source and target schemas. This solution contributed in solving more comprehensively and efficiently XML schema automated matching problem. Our solution based on combining linguistic similarity, data type compatibility and structural similarity of XML schema elements. After describing our solution, we present experimental results that demonstrate the effectiveness of this approach.

The Effect of Ultrasonic Vibration of Workpiece in Electrical Discharge Machining of AISIH13 Tool Steel

In the present work, a study has been made on the combination of the electrical discharge machining (EDM) with ultrasonic vibrations to improve the machining efficiency. In experiments the graphite used as tool electrode and material of workpiece was AISIH13 tool steel. The parameters such as discharge peak current and pulse duration were changed to explore their effect on the material removal rate (MRR), relative tool wear ratio (TWR) and surface roughness. From the experimental result it can be seen that ultrasonic vibration of the workpiece can significantly reduces the inactive pulses and improves the stability of process. It was found that ultrasonic assisted EDM (US-EDM) is effective in attaining a high material removal rate (MRR) in finishing regime.

Structural Characteristics of Three-Dimensional Random Packing of Aggregates with Wide Size Distribution

The mechanical properties of granular solids are dependent on the flow of stresses from one particle to another through inter-particle contact. Although some experimental methods have been used to study the inter-particle contacts in the past, preliminary work with these techniques indicated that they do not have the necessary resolution to distinguish between those contacts that transmit the load and those that do not, especially for systems with a wide distribution of particle sizes. In this research, computer simulations are used to study the nature and distribution of contacts in a compact with wide particle size distribution, representative of aggregate size distribution used in asphalt pavement construction. The packing fraction, the mean number of contacts and the distribution of contacts were studied for different scenarios. A methodology to distinguish and compute the fraction of load-bearing particles and the fraction of space-filling particles (particles that do not transmit any force) is needed for further investigation.

Embedded Throughput Improving of Low-rate EDR Packets for Lower-latency

With increasing utilization of the wireless devices in different fields such as medical devices and industrial fields, the paper presents a method for simplify the Bluetooth packets with throughput enhancing. The paper studies a vital issue in wireless communications, which is the throughput of data over wireless networks. In fact, the Bluetooth and ZigBee are a Wireless Personal Area Network (WPAN). With taking these two systems competition consideration, the paper proposes different schemes for improve the throughput of Bluetooth network over a reliable channel. The proposition depends on the Channel Quality Driven Data Rate (CQDDR) rules, which determines the suitable packet in the transmission process according to the channel conditions. The proposed packet is studied over additive White Gaussian Noise (AWGN) and fading channels. The Experimental results reveal the capability of extension of the PL length by 8, 16, 24 bytes for classic and EDR packets, respectively. Also, the proposed method is suitable for the low throughput Bluetooth.