Investigation of Various PWM Techniques for Shunt Active Filter

Pulse width modulation (PWM) techniques have been the subject of intensive research for different industrial and power sector applications. A large variety of methods, different in concept and performance, have been newly developed and described. This paper analyzes the comparative merits of Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) techniques and the suitability of these techniques in a Shunt Active Filter (SAF). The objective is to select the scheme that offers effective utilization of DC bus voltage and also harmonic reduction at the input side. The effectiveness of the PWM techniques is tested in the SAF configuration with a non linear load. The performance of the SAF with the SPWM and (SVPWM) techniques are compared with respect to the THD in source current. The study reveals that in the context of closed loop SAF control with the SVPWM technique there is only a minor improvement in THD. The utilization of the DC bus with SVPWM is also not significant compared to that with SPWM because of the non sinusoidal modulating signal from the controller in SAF configuration.

Target Concept Selection by Property Overlap in Ontology Population

An ontology is widely used in many kinds of applications as a knowledge representation tool for domain knowledge. However, even though an ontology schema is well prepared by domain experts, it is tedious and cost-intensive to add instances into the ontology. The most confident and trust-worthy way to add instances into the ontology is to gather instances from tables in the related Web pages. In automatic populating of instances, the primary task is to find the most proper concept among all possible concepts within the ontology for a given table. This paper proposes a novel method for this problem by defining the similarity between the table and the concept using the overlap of their properties. According to a series of experiments, the proposed method achieves 76.98% of accuracy. This implies that the proposed method is a plausible way for automatic ontology population from Web tables.

Agent-based Simulation for Blood Glucose Control in Diabetic Patients

This paper employs a new approach to regulate the blood glucose level of type I diabetic patient under an intensive insulin treatment. The closed-loop control scheme incorporates expert knowledge about treatment by using reinforcement learning theory to maintain the normoglycemic average of 80 mg/dl and the normal condition for free plasma insulin concentration in severe initial state. The insulin delivery rate is obtained off-line by using Qlearning algorithm, without requiring an explicit model of the environment dynamics. The implementation of the insulin delivery rate, therefore, requires simple function evaluation and minimal online computations. Controller performance is assessed in terms of its ability to reject the effect of meal disturbance and to overcome the variability in the glucose-insulin dynamics from patient to patient. Computer simulations are used to evaluate the effectiveness of the proposed technique and to show its superiority in controlling hyperglycemia over other existing algorithms

Investigation of Inert Gas Injection in Steam Reforming of Methane: Energy

Synthesis gas manufacturing by steam reforming of hydrocarbons is an important industrial process. High endothermic nature of the process makes it one of the most cost and heat intensive processes. In the present work, composite effect of different inert gases on synthesis gas yield, feed gas conversion and temperature distribution along the reactor length has been studied using a heterogeneous model. Mathematical model was developed as a first stage and validated against the existing process models. With the addition of inert gases, a higher yield of synthesis gas is observed. Simultaneously the rector outlet temperature drops to as low as 810 K. It was found that Xenon gives the highest yield and conversion while Helium gives the lowest temperature. Using Xenon inert gas 20 percent reduction in outlet temperature was observed compared to traditional case.

Influence of Hydrocarbons on Plant Cell Ultrastructure and Main Metabolic Enzymes

Influence of octane and benzene on plant cell ultrastructure and enzymes of basic metabolism, such as nitrogen assimilation and energy generation have been studied. Different plants: perennial ryegrass (Lolium perenne) and alfalfa (Medicago sativa); crops- maize (Zea mays L.) and bean (Phaseolus vulgaris); shrubs – privet (Ligustrum sempervirens) and trifoliate orange (Poncirus trifoliate); trees - poplar (Populus deltoides) and white mulberry (Morus alba L.) were exposed to hydrocarbons of different concentrations (1, 10 and 100 mM). Destructive changes in bean and maize leaves cells ultrastructure under the influence of benzene vapour were revealed at the level of photosynthetic and energy generation subcellular organells. Different deviations at the level of subcellular organelles structure and distribution were observed in alfalfa and ryegrass root cells under the influence of benzene and octane, absorbed through roots. The level of destructive changes is concentration dependent. Benzene at low 1 and 10 mM concentration caused the increase in glutamate dehydrogenase (GDH) activity in maize roots and leaves and in poplar and mulberry shoots, though to higher extent in case of lower, 1mM concentration. The induction was more intensive in plant roots. The highest tested 100mM concentration of benzene was inhibitory to the enzyme in all plants. Octane caused induction of GDH in all grassy plants at all tested concentrations; however the rate of induction decreased parallel to increase of the hydrocarbon concentration. Octane at concentration 1 mM caused induction of GDH in privet, trifoliate and white mulberry shoots. The highest, 100mM octane was characterized by inhibitory effect to GDH activity in all plants. Octane had inductive effect on malate dehydrogenase in almost all plants and tested concentrations, indicating the intensification of Trycarboxylic Acid Cycle. The data could be suggested for elaboration of criteria for plant selection for phytoremediation of oil hydrocarbons contaminated soils.

A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives

Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.

Challenges of Irrigation Water Supply in Croplands of Arid Regions and their Environmental Consequences – A Case Study in the Dez and Moghan Command Areas of Iran

Renewable water resources are crucial production variables in arid and semi-arid regions where intensive agriculture is practiced to meet ever-increasing demand for food and fiber. This is crucial for the Dez and Moghan command areas where water delivery problems and adverse environmental issues are widespread. This paper aims to identify major problems areas using on-farm surveys of 200 farmers, agricultural extensionists and water suppliers which was complemented by secondary data and field observations during 2010- 2011 cultivating season. The SPSS package was used to analyze and synthesis data. Results indicated inappropriate canal operations in both schemes, though there was no unanimity about the underlying causes. Inequitable and inflexible distribution was found to be rooted in deficient hydraulic structures particularly in the main and secondary canals. The inadequacy and inflexibility of water scheduling regime was the underlying causes of recurring pest and disease spread which often led to the decline of crop yield and quality, although these were not disputed, the water suppliers were not prepared to link with the deficiencies in the operation of the main and secondary canals. They rather attributed these to the prevailing salinity; alkalinity, water table fluctuations and leaching of the valuable agro-chemical inputs from the plants- route zone with farreaching consequences. Examples of these include the pollution of ground and surface resources due to over-irrigation at the farm level which falls under the growers- own responsibility. Poor irrigation efficiency and adverse environmental problems were attributed to deficient and outdated farming practices that were in turn rooted in poor extension programs and irrational water charges.

A Pattern Language for Software Debugging

In spite of all advancement in software testing, debugging remains a labor-intensive, manual, time consuming, and error prone process. A candidate solution to enhance debugging process is to fuse it with testing process. To achieve this integration, a possible solution may be categorizing common software tests and errors followed by the effort on fixing the errors through general solutions for each test/error pair. Our approach to address this issue is based on Christopher Alexander-s pattern and pattern language concepts. The patterns in this language are grouped into three major sections and connect the three concepts of test, error, and debug. These patterns and their hierarchical relationship shape a pattern language that introduces a solution to solve software errors in a known testing context. Finally, we will introduce our developed framework ADE as a sample implementation to support a pattern of proposed language, which aims to automate the whole process of evolving software design via evolutionary methods.

Knowledge Acquisition, Absorptive Capacity, and Innovation Capability: An Empirical Study of Taiwan's Knowledge-Intensive Industries

This study investigates the roles of knowledge acquisition, absorptive capacity, and innovation capability in finance and manufacturing industries. With 362 valid questionnaires from manufactures and financial industries in Taiwan, we examine the relationships between absorptive capacity, knowledge acquisition and innovation capability using a structural equation model. The results indicate that absorptive capacity is the mediator between knowledge acquisition and innovation capability, and that knowledge acquisition has a positive effect on absorptive capacity.

Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

An effort estimation model is needed for softwareintensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

Bandwidth Estimation Algorithms for the Dynamic Adaptation of Voice Codec

In the recent years multimedia traffic and in particular VoIP services are growing dramatically. We present a new algorithm to control the resource utilization and to optimize the voice codec selection during SIP call setup on behalf of the traffic condition estimated on the network path. The most suitable methodologies and the tools that perform realtime evaluation of the available bandwidth on a network path have been integrated with our proposed algorithm: this selects the best codec for a VoIP call in function of the instantaneous available bandwidth on the path. The algorithm does not require any explicit feedback from the network, and this makes it easily deployable over the Internet. We have also performed intensive tests on real network scenarios with a software prototype, verifying the algorithm efficiency with different network topologies and traffic patterns between two SIP PBXs. The promising results obtained during the experimental validation of the algorithm are now the basis for the extension towards a larger set of multimedia services and the integration of our methodology with existing PBX appliances.

Parallel Distributed Computational Microcontroller System for Adaptive Antenna Downlink Transmitter Power Optimization

This paper presents a tested research concept that implements a complex evolutionary algorithm, genetic algorithm (GA), in a multi-microcontroller environment. Parallel Distributed Genetic Algorithm (PDGA) is employed in adaptive beam forming technique to reduce power usage of adaptive antenna at WCDMA base station. Adaptive antenna has dynamic beam that requires more advanced beam forming algorithm such as genetic algorithm which requires heavy computation and memory space. Microcontrollers are low resource platforms that are normally not associated with GAs, which are typically resource intensive. The aim of this project was to design a cooperative multiprocessor system by expanding the role of small scale PIC microcontrollers to optimize WCDMA base station transmitter power. Implementation results have shown that PDGA multi-microcontroller system returned optimal transmitted power compared to conventional GA.

Modeling of Surface Roughness for Flow over a Complex Vegetated Surface

Turbulence modeling of large-scale flow over a vegetated surface is complex. Such problems involve large scale computational domains, while the characteristics of flow near the surface are also involved. In modeling large scale flow, surface roughness including vegetation is generally taken into account by mean of roughness parameters in the modified law of the wall. However, the turbulence structure within the canopy region cannot be captured with this method, another method which applies source/sink terms to model plant drag can be used. These models have been developed and tested intensively but with a simple surface geometry. This paper aims to compare the use of roughness parameter, and additional source/sink terms in modeling the effect of plant drag on wind flow over a complex vegetated surface. The RNG k-ε turbulence model with the non-equilibrium wall function was tested with both cases. In addition, the k-ω turbulence model, which is claimed to be computationally stable, was also investigated with the source/sink terms. All numerical results were compared to the experimental results obtained at the study site Mason Bay, Stewart Island, New Zealand. In the near-surface region, it is found that the results obtained by using the source/sink term are more accurate than those using roughness parameters. The k-ω turbulence model with source/sink term is more appropriate as it is more accurate and more computationally stable than the RNG k-ε turbulence model. At higher region, there is no significant difference amongst the results obtained from all simulations.

The Current Awareness of Just-In-Time Techniques within the Libyan Textile Private Industry: A Case Study

Almost all Libyan industries (both private and public) have struggled with many difficulties during the past three decades due to many problems. These problems have created a strongly negative impact on the productivity and utilization of many companies within Libya. This paper studies the current awareness and implementation levels of Just-In-Time (JIT) within the Libyan Textile private industry. A survey has been applied in this study using an intensive detailed questionnaire. Based on the analysis of the survey responses, the results show that the management body within the surveyed companies has a modest strategy towards most of the areas that are considered as being very crucial in any successful implementation of JIT. The results also show a variation within the implementation levels of the JIT elements as these varies between Low and Acceptable levels. The paper has also identified limitations within the investigated areas within this industry, and has pointed to areas where senior managers within the Libyan textile industry should take immediate actions in order to achieve effective implementation of JIT within their companies.

Family Structure between Muslim and Santal Communities in Rural Bangladesh

Family structure that is culturally constructed in every society is the basic unit of social structure. Purpose of the study was to compare family structure, including marriage, residence, family size, type, role sharing, authority, and communication patterns between Muslim and Santal communities in rural Bangladesh. For this we assumed that family structure with the elements was significantly different between the two communities in rural Bangladesh. In so doing, 288 active couples (145 for Muslim and 143 for Santal) selected by cluster random sampling were intensively interviewed with a semi-structured questionnaire method. The results of Pearson Chi-Squire Test reveal that there were significant differences in the family structure followed by the two communities in the study area. Further cross-cultural study should be done on why family structure varies between the communities in Bangladesh.

Packaging and Interconnection Technologies of Power Devices, Challenges and Future Trends

Standard packaging and interconnection technologies of power devices have difficulties meeting the increasing thermal demands of new application fields of power electronics devices. Main restrictions are the decreasing reliability of bond-wires and solder layers with increasing junction temperature. In the last few years intensive efforts have been invested in developing new packaging and interconnection solutions which may open a path to future application of power devices. In this paper, the main failure mechanisms of power devices are described and principle of new packaging and interconnection concepts and their power cycling reliability are presented.

A Promising Approach to Supporting Knowledge-Intensive Business Processes: Business Case Management

Through the course of this paper we define Business Case Management and its characteristics, and highlight its link to knowledge workers. Business Case Management combines knowledge and process effectively, supporting the ad hoc and unpredictable nature of cases, and coordinate a range of other technologies to appropriately support knowledge-intensive processes. We emphasize the growing importance of knowledge workers and the current poor support for knowledge work automation. We also discuss the challenges in supporting this kind of knowledge work and propose a novel approach to overcome these challenges.

Pathway to Reduce Industrial Energy Intensity for Energy Conservation at Chinese Provincial Level

Using logarithmic mean Divisia decomposition technique, this paper analyzes the change in industrial energy intensity of Fujian Province in China, based on data sets of added value and energy consumption for 35 selected industrial sub-sectors from 1999 to 2009. The change in industrial energy intensity is decomposed into intensity effect and structure effect. Results show that the industrial energy intensity of Fujian Province has achieved a reduction of 51% over the past ten years. The structural change, a shift in the mix of industrial sub-sectors, made overwhelming contribution to the reduction. The impact of energy efficiency’s improvement was relatively small. However, the aggregate industrial energy intensity was very sensitive to both the changes in energy intensity and in production share of energy-intensive sub-sectors, such as production and supply of electric power, steam and hot water. Pathway to reduce industrial energy intensity for energy conservation in Fujian Province is proposed in the end.

Development Prospects of Education System in Modernization

the article analyzes the development prospects of education system in Kazakhstan. Education is among key sources of culture and social mobility. Modern education must become civic which means availability of high quality education to all people irrespective of their racial, ethnic, religious, social, gender and any other differences. Socially focused nature of modernization of Kazakhstan-s society is predicated upon formation of a civic education model in the future. Kazakhstan-s education system undergoes intensive reforms first of all intended to achieve international education standards and integration into the global educational and information space.

Interaxial Distance and Convergence Control for Efficient Stereoscopic Shooting using Horizontal Moving 3D Camera Rig

The proper assessment of interaxial distance and convergence control are important factors in stereoscopic imaging technology to make an efficient 3D image. To control interaxial distance and convergence for efficient 3D shooting, horizontal 3D camera rig is designed using some hardware components like 'LM Guide', 'Goniometer' and 'Rotation Stage'. The horizontal 3D camera rig system can be properly aligned by moving the two cameras horizontally in same or opposite directions, by adjusting the camera angle and finally considering horizontal swing as well as vertical swing. In this paper, the relationship between interaxial distance and convergence angle control are discussed and intensive experiments are performed in order to demonstrate an easy and effective 3D shooting.