Comparison of Process Slaughtered on Beef Cattle Based on Level of Cortisol and Fourier Transform Infrared Spectroscopy (FTIR)

Stress of slaughter animals starting long before until at the time of process of slaughtering which cause misery and decrease of meat quality. Meanwhile, determination of animal stress using hormonal such as cortisol is expensive and less practical so that portable stress indicator for cows based on Fourier Transform Infrared Spectroscopy (FTIR) must be provided. The aims of this research are to find out the comparison process of slaughter between Rope Casting Local (RCL) and Restraining Box Method (RBM) by measuring of cortisol and wavelength in FTIR methods. Thirty two of male Ongole crossbred cattle were used in this experiment. Blood sampling was taken from jugular vein when they were rested and repeated when slaughtered. All of blood samples were centrifuged at 3000 rpm for 20 minutes to get serum, and then divided into two parts for cortisol assayed using ELISA and for measuring the wavelength using FTIR. The serum then measured at the wavelength between 4000-400 cm-1 using MB3000 FTIR. Band data absorption in wavelength of FTIR is analyzed descriptively by using FTIR Horizon MBTM. For RCL, average of serum cortisol when the animals rested were 11.47 ± 4.88 ng/mL, when the time of slaughter were 23.27 ± 7.84 ng/mL. For RBM, level of cortisol when rested animals were 13.67 ± 3.41 ng/mL and 53.47 ± 20.25 ng/mL during the slaughter. Based on student t-Test, there were significantly different between RBM and RCL methods when beef cattle were slaughtered (P0.05). Result of FTIR with the various of wavelength such as methyl group (=CH3 ) 2986cm-1, methylene (=CH2 ) 2827 cm-1, hydroxyl (- OH) 3371 cm-1, carbonyl (ketones) (C=O) 1636 cm-1, carboxyl (COO-1) 1408 cm-1, glucosa 1057 cm-1, urea 1011 cm-1have been obtained. It can be concluded that the RCL slaughtered method is better than the RBM method based on the increase of cortisol as an indicator of stress in beef cattle (P

A Piscan Ulcerative Aeromonas Infection

In the immunologic sense, clinical infection is a state of failure of the immune system to combat the pathogenic weapon of the bacteria invading the host. A motile gram negative vibroid organism associated with marked mono and poly nuclear cell responses was traced during the examination of a clinical material from an infected common carp Cyprinus carpio. On primary plate culture, growth was shown to be pure, dense population of an Aeromonas-like colony morphotype. The pure isolate was found to be; Aerobic, facultatively anaerobic, non-halophilic, grew at 0C, and 37C, oxidase positive utilizes glucose through fermentative pathway, resist 0/129 and novobiocin, produces alanine and lysine decarboxylases but non-producing ornithine dehydrolases. Tests for the in vitro determinants of pathogenicity has shown to be; Betahaemolytic onto blood agar, gelatinase, casienase and amylase producer. Three in vivo determinants of pathogenicity were tested as, the lethal dose fifty, the pathogenesis and pathogenicity. It was evident that 0.1 milliliter of the causal bacterial cell suspension of a density 1 x 107 CFU/ml injected intramuscularly into an average of 100gms fish toke five days incubation period, then at the day six morbidity and mortality were initiated. LD50 was recorded at the day 12 post-infection. Use of an LD50 doses to study the pathogenicity, reveals mononuclear and polynuclear cell responses, on examining the stained direct films of the clinical materials from the experimentally infected fish. Re-isolation tests confirm that the reisolant is same. The course of the infection in natural case was shown manifestation of; skin ulceration, haemorrhage and descaling. On evisceration, the internal organs were shown; congestion in the intestines, spleen and, air sacs. The induced infection showed a milder form of these manifestations. The grading of the virulence of this organism was virulent causing chronic course of infections as indicated from the pathogenesis and pathogenicity studies. Thus the infectious bacteria were consistent with Aeromonas hydrophila, and the infection was chronic.

Organizational Socialization Levels in Nurses

The research was conducted in order to determine the organizational socialization levels of nurses working in hospitals in the form of a descriptive study. The research population was composed of nurses employed in public and private sector hospitals in the province of Konya with 0-3 years of professional experience in the hospitals (N=1200); and the sample was composed of 495 nurses that accepted to take part in the study voluntarily. Statistical evaluation of data was conducted in SPSS.16 software. The results of the study revealed that the total score taken by nurses at the organizational socialization scale was 262.95; and this was close to the maximum score. Particularly the departmental socialization sub-dimension proved to be higher in comparison to the other two dimensions (organization socialization and task socialization). Statistically meaningful differences were found in the levels of organization socialization in relation to the status of organizational orientation training, level of education and age group.

Cissampelos capensis Rhizome Extract Induces Intracellular ROS Production, Capacitation and DNA Fragmentation in Human Spermatozoa

More than 3000 plants of notable phyto-therapeutic value grow in South Africa; these include Cissampelos capensis, commonly known in Afrikaans as dawidjie or dawidjiewortel. C. capensis is the most significant and popular medicinal plant used by the Khoisan as well as other rural groups in the Western region of South Africa. Its rhizomes are traditionally used to treat male fertility problems. Yet, no studies have investigated the effects of this plant or its extracts on human spermatozoa. Therefore, this study aimed at investigating the effects of C. capensis rhizome extract (CRE) fractions on ejaculated human spermatozoa in vitro. Spermatozoa from a total of 77 semen samples were washed with human tubular fluid medium supplemented with bovine serum albumin (HTF-BSA) and incubated for 2 hours with 20 μg/ml progesterone (P4) followed by incubation with different concentrations (0, 0.05, 0.5, 5, 50, 200 μg/ml) of fractionated CRE (F1=0% MeOH, F2=30% MeOH, F3=60% MeOH and F4=100% MeOH) for 1.5 hours at 37°C. A sample without addition of CRE fractions served as control. Samples were analyzed for sperm motility, reactive oxygen species (ROS), DNA-fragmentation, acrosome reaction and capacitation. Results showed that F1 resulted in significantly higher values for ROS, capacitation and hyper-activation compared to F2, F3, and F4 with P4-stimulated samples generally having higher values. No significant effect was found for the other parameters. In conclusion, alkaloids present in F1 of CRE appear to have triggered sperm intrinsic ROS production leading to sperm capacitation and acrosome reaction induced by P4.

Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture

Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050 was observed to be the maximum extracellular enzyme producer.

Characterization Study of Aluminium 6061 Hybrid Composite

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Classification of Construction Projects

In order to address construction project requirements and specifications, scholars and practitioners need to establish taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed.

An Efficient Pixel Based Cervical Disc Localization

When neck pain is associated with pain, numbness, or weakness in the arm, shoulder, or hand, further investigation is needed as these are symptoms indicating pressure on one or more nerve roots. Evaluation necessitates a neurologic examination and imaging using an MRI/CT scan. A degenerating disc loses some thickness and is less flexible, causing inter-vertebrae space to narrow. A radiologist diagnoses an Intervertebral Disc Degeneration (IDD) by localizing every inter-vertebral disc and identifying the pathology in a disc based on its geometry and appearance. Accurate localizing is necessary to diagnose IDD pathology. But, the underlying image signal is ambiguous: a disc’s intensity overlaps the spinal nerve fibres. Even the structure changes from case to case, with possible spinal column bending (scoliosis). The inter-vertebral disc pathology’s quantitative assessment needs accurate localization of the cervical region discs. In this work, the efficacy of multilevel set segmentation model, to segment cervical discs is investigated. The segmented images are annotated using a simple distance matrix.

Characterization and Predictors of Paranoid Ideation in Youths

Paranoid ideation is a common thought process that constitutes a defense against perceived social threats. The current study aimed at the characterization of paranoid ideation in youths and to explore the possible predictors involved in the development of paranoid ideations. Paranoid ideation, shame, submission, early childhood memories and current depressive, anxious and stress symptomatology were assessed in a sample of 1516 Portuguese youths. Higher frequencies of paranoid ideation were observed, particularly in females and youths from lower socioeconomic status. The main predictors identified relates to submissive behaviors and adverse childhood experiences, and especially to shame feelings. The current study emphasizes that the these predictors are similar to findings in adults and clinical populations, and future implications to research and clinical practice aiming at paranoid ideations are discussed, as well as the pertinence of the study of mediating factors that allow a wider understanding of this thought process in younger populations and the prevention of psychopathology in adulthood.

The Different Roles between Sodium and Potassium Ions in Ion Exchange of WO3/SiO2 Catalysts

WO3/SiO2 catalysts were modified by an ion exchange method with sodium hydroxide or potassium hydroxide solution. The performance of the modified catalysts was tested in the metathesis of ethylene and trans-2-butene to propylene. During ion exchange, sodium and potassium ions played different roles. Sodium modified catalysts revealed constant trans-2-butene conversion and propylene selectivity when the concentrations of sodium in the solution were varied. In contrast, potassium modified catalysts showed reduction of the conversion and increase of the selectivity. From these results, potassium hydroxide may affect the transformation of tungsten oxide active species, resulting in the decrease in conversion whereas sodium hydroxide did not. Moreover, the modification of catalysts by this method improved the catalyst stability by lowering the amount of coke deposited on the catalyst surface.

Implementing a Strategy of Reliability Centered Maintenance (RCM) in the Libyan Cement Industry

The substantial development of the construction industry has forced the cement industry, its major support, to focus on achieving maximum productivity to meet the growing demand for this material. This means that the reliability of a cement production system needs to be at the highest level that can be achieved by good maintenance. This paper studies the extent to which the implementation of RCM is needed as a strategy for increasing the reliability of the production systems component can be increased, thus ensuring continuous productivity. In a case study of four Libyan cement factories, 80 employees were surveyed and 12 top and middle managers interviewed. It is evident that these factories usually breakdown more often than once per month which has led to a decline in productivity. In many times they cannot achieve the minimum level of production amount. This has resulted from the poor reliability of their production systems as a result of poor or insufficient maintenance. It has been found that most of the factories’ employees misunderstand maintenance and its importance. The main cause of this problem is the lack of qualified and trained staff, but in addition it has been found that most employees are not found to be motivated as a result of a lack of management support and interest. In response to these findings, it has been suggested that the RCM strategy should be implemented in the four factories. The results show the importance of the development of maintenance strategies through the implementation of RCM in these factories. The purpose of it would be to overcome the problems that could secure the reliability of the production systems. This study could be a useful source of information for academic researchers and the industrial organizations which are still experiencing problems in maintenance practices.

Preservation of Coconut Toddy Sediments as a Leavening Agent for Bakery Products

Toddy sediment (TS) was cultured in a PDA medium to determine initial yeast load, and also it was undergone sun, shade, solar, dehumidified cold air (DCA) and hot air oven (at 400, 500 and 60oC) drying with a view to preserve viability of yeast. Thereafter, this study was conducted according to two factor factorial design in order to determine best preservation method. Therein the dried TS from the best drying method was taken and divided into two portions. One portion was mixed with 3: 7 ratio of TS: rice flour and the mixture was divided in to two again. While one portion was kept under in house condition the other was in a refrigerator. Same procedure was followed to the rest portion of TS too but it was at the same ratio of corn flour. All treatments were vacuum packed in triple laminate pouches and the best preservation method was determined in terms of leavening index (LI). The TS obtained from the best preservation method was used to make foods (bread and hopper) and organoleptic properties of it were evaluated against same of ordinary foods using sensory panel with a five point hedonic scale. Results revealed that yeast load or fresh TS was 58×106 CFU/g. The best drying method in preserving viability of yeast was DCA because LI of this treatment (96%) is higher than that of other three treatments. Organoleptic properties of foods prepared from best preservation method are as same as ordinary foods according to Duo trio test.

The Determination of the Potassium Nitrate, Sodium Hydroxide and Boric Acid Molar Ratio in the Synthesis of Potassium Borates via Hydrothermal Method

Potassium borates, which are widely used in welding and metal refining industry, as a lubricating oil additive, cement additive, fiberglass additive and insulation compound, are one of the important groups of borate minerals. In this study the production of a potassium borate mineral via hydrothermal method is aimed. The potassium source of potassium nitrate (KNO3) was used along with a sodium source of sodium hydroxide (NaOH) and boron source of boric acid (H3BO3). The constant parameters of reaction temperature and reaction time were determined as 80°C and 1 h, respectively. The molar ratios of 1:1:3 (as KNO3:NaOH:H3BO3), 1:1:4, 1:1:5, 1:1:6 and 1:1:7 were used. Following the synthesis the identifications of the produced products were conducted by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectroscopy. The results of the experiments and analysis showed in the ratio of 1:1:6, the Santite mineral with powder diffraction file number (pdf no.) of 01-072-1688, which is known as potassium pentaborate (KB5O8·4H2O) was synthesized as best.

The Study of Magnetic and Transport Properties in Normal State Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ

The effect of partially substitution of magnetic impurity Fe for Cu to the magnetic and transport properties in electron-doped superconducting cuprates of Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ (ECCFO) with y = 0, 0.010, 0.020, and 0.050 has been studied, in order to investigate the mechanism of magnetic and transport properties of ECCFO in normal-state. Magnetic properties are investigated by DC magnetic-susceptibility measurements that carried out at low temperatures down to 2 K using a standard SQUID magnetometer in a magnetic field of 5 Oe on field cooling. Transport properties addressed to electron mobility, are extracted from radius of electron localization calculated from temperature dependence of resistivity. For y = 0, temperature dependence of dc magnetic-susceptibility (χ) indicated the change of magnetic behavior from paramagnetic to diamagnetic below 15 K. Above 15 K, all samples show paramagnetic behavior with the values of magnetic moment in every volume unit increased with increasing y. Electron mobility decreased with increasing y.

Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/TiO2 Nano-Composite Coatings

Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nanoparticles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nanoparticles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.

The Analysis and Simulation of TRACE in the Ultimate Response Guideline for Chinshan BWR/4 Nuclear Power Plant

In this research, TRACE model of Chinshan BWR/4 nuclear power plant (NPP) has been developed for the simulation and analysis of ultimate response guideline (URG).The main actions of URG are the depressurization and low pressure water injection of reactor and containment venting. This research focuses to verify the URG efficiency under Fukushima-like conditions. TRACE analysis results show that the URG can keep the PCT below the criteria 1088.7 K under Fukushima-like conditions. It indicated that Chinshan NPP was safe.

The Law of Treaties and National Security of Islamic Republic of Iran

The concept of national security in Iran is a permanently effective factor in acceptance or rejection of many international obligations. These obligations had been defined according to the type of legislation of Iran in many aspects. Therefore, there are several treaties at international level which requires Iran’s security to come in contact with obligations in these treaties in a way that an obstacle to join to them and their passage in parliament. This issue is a typical category which every country pays attention to be accepted in treaties or to include their national security in that treaties and also they can see the related treaties from this perspective, but this issue that 'what is the concept of Iran’s national security', and 'To what extent it is changed in recent years, especially after Islamic Revolution' are important issues that can be criticized. Thus, this study is trying to assess singed treaties from the perspective of Iran’s national security according of the true meaning of treaty and to investigate how the international treaties may be in conflict with Iran’s national security.

The Techno-Pedagogical Pivot: Designing and Implementing a Digital Writing Tool

In educational technology, the idea of innovation is usually tethered to contemporary technological inventions and emerging technologies. Yet, using long-known technologies in ways that are pedagogically or experimentially new can reposition them as emerging educational technologies. In this study we explore how a subtle pivot in pedagogical thinking led to an innovative education technology. We describe the design and implementation of an online writing tool that scaffolds students in the evaluation of their own informational texts. We think about how pathways to innovation can emerge from pivots, namely a leveraging of longstanding practices in novel ways has the potential to cultivate new opportunities for learning. We first unpack Infowriter in terms of its design, then we describe some results of a study in which we implemented an intervention which included our designed application.

Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp

Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Both activated carbons showed high efficiency when pH ≤ pHPZC as the carbonil group of paracetamol molecule are adsorbed due to positively charged carbon surface. Microporosity also played an important role in such process. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation.

Role of Selenite and Selenate Uptake by Maize Plants in Chlorophyll A and B Content

Extracting and determining chlorophyll pigments (chlorophyll a and b) in green leaves are the procedures based on the solvent extraction of pigments in samples using N,Ndimethylformamide as the extractant. In this study, two species of soluble inorganic selenium forms, selenite (SeIV) and selenate (SeVI) at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and at the end of the experiment, amounts of chlorophyll a and b for first and second leaves of maize were measured. In accordance with the results we observed that our regarded Se concentrations in both forms of SeIV and SeVI were not effective on maize plants’ chlorophyll a and b significantly although high level of 3 mg.kg-1 SeIV had negative affect on growth of the samples that had been treated by it but about SeVI samples we did not observe this state and our different considered SeVI concentrations were not toxic for maize plants.