Characteristics of Suspended Solids Removal by Electrocoagulation

The electrochemical coagulation of a kaolin suspension was investigated at the currents of 0.06, 0.12, 0.22, 0.44, 0.85 A (corresponding to 0.68, 1.36, 2.50, 5.00, 9.66 mA·cm-2, respectively) for the contact time of 5, 10, 20, 30, and 50 min. The TSS removal efficiency at currents of 0.06 A, 0.12 A and 0.22 A increased with the amount of iron generated by the sacrificial anode, while the removal efficiencies did not increase proportionally with the amount of iron generated at the currents of 0.44 and 0.85 A, where electroflotation was clearly observed. Zeta potential measurement illustrated the presence of the highly positive charged particles created by sorption of highly charged polymeric metal hydroxyl species onto the negative surface charged kaolin particles at both low and high applied currents. The disappearance of the individual peaks after certain contact times indicated the attraction between these positive and negative charged particles causing agglomeration. It was concluded that charge neutralization of the individual species was not the only mechanism operating in the electrocoagulation process at any current level, but electrostatic attraction was likely to co-operate or mainly operate.

Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process

Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and increase the quality of welded plates, a fixture can be used as a practical and low cost method with high efficiency. In this study, a coupled thermo-mechanical finite element model is coded in the software ANSYS to simulate the behavior of thin plates located by a 3-2-1 positioning system during the welding process. Computational results are compared with recent similar works to validate the finite element models. The agreement between the result of proposed model and other reported data proves that finite element modeling can accurately predict the behavior of welded thin plates.

N-Grams: A Tool for Repairing Word Order Errors in Ill-formed Texts

This paper presents an approach for repairing word order errors in English text by reordering words in a sentence and choosing the version that maximizes the number of trigram hits according to a language model. A possible way for reordering the words is to use all the permutations. The problem is that for a sentence with length N words the number of all permutations is N!. The novelty of this method concerns the use of an efficient confusion matrix technique for reordering the words. The confusion matrix technique has been designed in order to reduce the search space among permuted sentences. The limitation of search space is succeeded using the statistical inference of N-grams. The results of this technique are very interesting and prove that the number of permuted sentences can be reduced by 98,16%. For experimental purposes a test set of TOEFL sentences was used and the results show that more than 95% can be repaired using the proposed method.

Influence of PLA Film Packaging on the Shelf Life of Soft Cheese Kleo

Experiments were carried out at the Faculty of Food Technology of Latvia University of Agriculture (LLU). Soft cheese Kleo produced in Latvia was packed in a biodegradable PLA without barrierproperties and VC999 BioPack lidding film PLA, coated with a barrier of pure silicon oxide (SiOx) and in combination with modified atmosphere (MAP) the influence on the shelf life was investigated and compared with some conventional (OPP, PE/PA, PE/OPA and Multibarrier 60) polymer film impact. Modified atmosphere consisted of carbon dioxide CO2 (E 290) 30% and nitrogen N2 (E 941) 70%. The analyzable samples were stored at the temperature of +4.0±0.5 °C up to 32 days- and analyzed before packaging and in the 0, 5th, 11th, 15th, 18th, 22nd, 25th, 29th and 32nd day of storage. The shelf life was extended along to 32 days, good outside appearance and lactic acid aroma was observed.

Suggestion of Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Finite Difference Analysis, Development and Clinical Trials

The disaster from functional gastrointestinal disorders has detrimental impact on the quality of life of the effected population and imposes a tremendous social and economic burden. There are, however, rare diagnostic methods for the functional gastrointestinal disorders. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Objective of current study is, therefore, identify feasibility of a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristics above. Two-dimensional finite difference (FD) models (one normal and two rigid model) were developed to analyze the reflective characteristic (displacement) on each soft-tissue layer responded after application of ultrasound signals. The FD analysis was then based on elastic ultrasound theory. Validation of the model was performed via comparison of the characteristic of the ultrasonic responses predicted by FD analysis with that determined from the actual specimens for the normal and rigid conditions. Based on the results from FD analysis, ultrasound system for diagnosis of the functional gastrointestinal disorders was developed and clinically tested via application of it to 40 human subjects with/without functional gastrointestinal disorders who were assigned to Normal and Patient Groups. The FD models were favorably validated. The results from FD analysis showed that the maximum displacement amplitude in the rigid models (0.12 and 0.16) at the interface between the fat and muscle layers was explicitly less than that in the normal model (0.29). The results from actual specimens showed that the maximum amplitude of the ultrasonic reflective signal in the rigid models (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal model (0.1±0.2 Vp-p). Clinical tests using our customized ultrasound system showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3 Vp-p) were generally higher than those in normal group (0.1±0.2 Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These findings suggest that our customized ultrasound system using the ultrasonic reflective signal may be helpful to the diagnosis of the functional gastrointestinal disorders.

Food Habits and Nutritional Status of Fiji Rugby Players

The 15-a-side Fiji rugby team trains well in preparations for any rugby competition but rarely performs to expectations. In order to help the Fiji local based rugby players to identify some key basic areas in improving their performance, a series of workshops were conducted to assess their nutritional status and dietary habits in relation to energy demand during rugby matches. The nutrition workshop included the administration of questionnaires to 19 local based rugby players, requesting the following information: usual food intakes, training camp food intakes, carbohydrate loading, pre-game meals and post-game meals. The study revealed that poor eating habits of the players resulted in the low carbohydrate intake, which may have contributed to increase levels of fatigue leading to loss of stamina even before the second half of the game. It appears that the diet of most 15-a-side players does not provide enough energy to enable them to last the full eightyminutes of the game.

Crystalline Graphene Nanoribbons with Atomically Smooth Edges via a Novel Physico- Chemical Route

A novel physico-chemical route to produce few layer graphene nanoribbons with atomically smooth edges is reported, via acid treatment (H2SO4:HNO3) followed by characteristic thermal shock processes involving extremely cold substances. Samples were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy. This method demonstrates the importance of having the nanotubes open ended for an efficient uniform unzipping along the nanotube axis. The average dimensions of these nanoribbons are approximately ca. 210 nm wide and consist of few layers, as observed by transmission electron microscopy. The produced nanoribbons exhibit different chiralities, as observed by high resolution transmission electron microscopy. This method is able to provide graphene nanoribbons with atomically smooth edges which could be used in various applications including sensors, gas adsorption materials, composite fillers, among others.

A Brain Inspired Approach for Multi-View Patterns Identification

Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.

Effects of Allelochemical Gramine on Photosynthetic Pigments of Cyanobacterium Microcystis aeruginosa

Toxic and bloom-forming cyanobacterium Microcystis aeruginosa was exposed to antialgal allelochemical gramine (0, 0.5, 1, 2, 4, 8 mg·L-1), The effects of gramine on photosynthetic pigments (lipid soluble: chlorophyll a and β-carotene; water soluble: phycocyanin, allophycocyanin, phycoerythrin, and total phycobilins) and absorption spectra were studied in order to identify the most sensitive pigment probe implicating the crucial suppression site on photosynthetic apparatus. The results obtained indicated that all pigment parameters were decreased with gramine concentration increasing and exposure time extending. The above serious bleaching of pigments was also reflected on the scanning results of absorption spectra. Phycoerytherin exhibited the highest sensitivity to gramine added, following by the largest relative decrease. It was concluded that gramine seriously influenced algal photosynthetic activity by destroying photosynthetic pigments and phycoerythrin most sensitive to gramine might be contributed to its placing the outside of phycobilins.

Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile

An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.

Design of AC Electronics Load Surge Protection

This study examines the design and construction of AC Electronics load surge protection in order to carry electric surge load arisen from faults in low voltage electricity system (single phase/220V) by using the principle of electronics load clamping voltage during induction period so that electric voltage could go through to safe load and continue to work. The qualification of the designed device could prevent both transient over voltage and voltage swell. Both will work in cooperation, resulting in the ability to improve and modify the quality of electrical power in Thailand electricity distribution system more effective than the past and help increase the lifetime of electric appliances, electric devices, and electricity protection equipments.

Comparison of The Fertilizer Properties of Ash Fractions from Medium-Sized (32 MW) and Small-Sized (6 MW) Municipal District Heating Plants

Due to the low heavy metal concentrations, the bottom ash from a 32 MW municipal district heating plant was determined to be a potential forest fertilizer as such. However, additional Ca would be needed, because its Ca concentration of 1.9- % (d.w.) was lower than the statutory Finnish minimum limit value of 6.0-% (d.w.) for Ca in forest fertilizer. Due to the elevated As concentration (53.0 mg/kg; d.w.) in the fly ash from the 32 MW municipal district heating plant, and Cr concentration (620 mg/kg; d.w.) in the ash fraction (i.e. mixture of the bottom ash and fly ash) from the 6 MW municipal district heating plant, which exceed the limit values of 30 mg/kg (d.w.) and 300 mg/kg (d.w.) for As and Cr, respectively, these residues are not suitable as forest fertilizers. Although these ash fractions cannot be used as a forest fertilizer as such, they can be used for the landscaping of landfills or in industrial and other areas that are closed to the public. However, an environmental permit is then needed.

Fish Marketing: A Panacea towards Sustainable Agriculture in Ogun State, Nigeria

This study assessed fish marketing as panacea towards sustainable agriculture in Ogun State, Nigeria. Multi-stage sampling technique was used in the selection of 150 fish marketers for this study. Descriptive statistics were used for the objectives while Product Pearson Moment Correlation was used to test the hypothesis. Result of the findings revealed that the mean age of the respondents was 38.60 years. Majority (93.33%) of the respondents had acceptable levels of formal education. Many (44.00%) of the respondents had spent 1-5 years in fish marketing. The average quantity of fish sold in a day was 94.10kg. However, efficient fish marketing were hindered by inadequate processing equipment, storage rooms and ice holding facilities (86.67%). There was a significant relationship between socio-economic characteristics and profit realized from fish marketing (p < 0.05). It was recommended that storage and warehousing facilities should be provided to the fish marketers in the study area.

Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface

In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.

Utilization of Sugarcane Bagasses for Lactic Acid Production by acid Hydrolysis and Fermentation using Lactobacillus sp

Sugarcane bagasses are one of the most extensively used agricultural residues. Using acid hydrolysis and fermentation, conversion of sugarcane bagasses to lactic acid was technically and economically feasible. This research was concerned with the solubility of lignin in ammonium hydroxide, acid hydrolysis and lactic acid fermentation by Lactococcus lactis, Lactobacillus delbrueckii, Lactobacillus plantarum, and Lactobacillus casei. The lignin extraction results for different ammonium hydroxide concentrations showed that 10 % (v/v) NH4OH was favorable to lignin dissolution. Acid hydrolysis can be enhanced with increasing acid concentration and reaction temperature. The optimum glucose and xylose concentrations occurred at 121 ○C for 1 hour hydrolysis time in 10% sulphuric acid solution were 32 and 11 g/l, respectively. In order to investigate the significance of medium composition on lactic acid production, experiments were undertaken whereby a culture of Lactococcus lactis was grown under various glucose, peptone, yeast extract and xylose concentrations. The optimum medium was composed of 5 g/l glucose, 2.5 g/l xylose, 10 g/l peptone and 5 g/l yeast extract. Lactococcus lactis represents the most efficient for lactic acid production amongst those considered. The lactic acid fermentation by Lactococcus lactis after 72 hours gave the highest yield of 1.4 (g lactic acid per g reducing sugar).

Impedance of an Encircling Coil due to a Cylindrical Tube with Varying Properties

Change in impedance of an encircling coil is obtained in the present paper for the case where the electric conductivity and magnetic permeability of a metal cylindrical tube depend on the radial coordinate. The system of equations for the vector potential is solved by means of the Fourier cosine transform. The solution is expressed in terms of improper integral containing modified Bessel functions of complex order.

Role of Customers in Stakeholders- Approach in Company Corporate Governance

The purpose of this paper is to explore the relationship between the customers- issues in company corporate governance and the financial performance. At the beginning theoretical background consisting stakeholder theory and corporate governance is presented. On this theoretical background, the empirical research is built, collecting data of 60 Czech joint stock companies- boards considering their relationships with customers. Correlation analysis and multivariate regression analysis were employed to test the sample on two hypotheses. The weak positive correlation between stakeholder approach and the company size was identified. But both hypotheses were not supported, because there was no significant relation of independent variables to financial performance.

Effect of Co3O4 Nanoparticles Addition on (Bi,Pb)-2223 Superconductor

The effect of nano Co3O4 addition on the superconducting properties of (Bi, Pb)-2223 system was studied. The samples were prepared by the acetate coprecipitation method. The Co3O4 with different sizes (10-30 nm and 30-50 nm) from x=0.00 to 0.05 was added to Bi1.6Pb0.4Sr2Ca2Cu3Oy(Co3O4)x. Phase analysis by XRD method, microstructural examination by SEM and dc electrical resistivity by four point probe method were done to characterize the samples. The X-ray diffraction patterns of all the samples indicated the majority Bi-2223 phase along with minor Bi-2212 and Bi-2201 phases. The volume fraction was estimated from the intensities of Bi- 2223, Bi-2212 and Bi-2201 phase. The sample with x=0.01 wt% of the added Co3O4 (10-30 nm size) showed the highest volume fraction of Bi-2223 phase (72%) and the highest superconducting transition temperature, Tc (~102 K). The non-added sample showed the highest Tc(~103 K) compared to added samples with nano Co3O4 (30-50 nm size) added samples. Both the onset critical temperature Tc(onset) and zero electrical resistivity temperature Tc(R=0) were in the range of 103-115 ±1K and 91-103 ±1K respectively for samples with added Co3O4 (10-30 nm and 30-50 nm).

Biodiversity of Micromycetes Isolated from Soils of Different Agricultures in Kazakhstan and Their Plant Growth Promoting Potential

The comparative analysis of different taxonomic groups of microorganisms isolated from dark chernozem soils under different agricultures (alfalfa, melilot, sainfoin, soybean, rapeseed) at Almaty region of Kazakhstan was conducted. It was shown that the greatest number of micromycetes was typical to the soil planted with alfalfa and canola. Species diversity of micromycetes markedly decreases as it approaches the surface of the root, so that the species composition in the rhizosphere is much more uniform than in the virgin soil. Promising strains of microscopic fungi and yeast with plant growth-promoting activity to agricultures were selected. Among the selected fungi there are representatives of Penicillium bilaiae, Trichoderma koningii, Fusarium equiseti, Aspergillus ustus. The highest rates of growth and development of seedlings of plants observed under the influence of yeasts Aureobasidium pullulans, Rhodotorula mucilaginosa, Metschnikovia pulcherrima. Using molecular - genetic techniques confirmation of the identification results of selected micromycetes was conducted.

Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response

In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.