Sloshing-Induced Overflow Assessment of the Seismically-Isolated Nuclear Tanks

This paper focuses on assessing sloshing-induced overflow of the seismically-isolated nuclear tanks based on Fluid-Structure Interaction (FSI) analysis. Typically, fluid motion in the seismically-isolated nuclear tank systems may be rather amplified and even overflowed under earthquake. Sloshing-induced overflow in those structures has to be reliably assessed and predicted since it can often cause critical damages to humans and environments. FSI analysis is herein performed to compute the total cumulative overflowed water volume more accurately, by coupling ANSYS with CFX for structural and fluid analyses, respectively. The approach is illustrated on a nuclear liquid storage tank, Spent Fuel Pool (SFP), forgiven conditions under consideration: different liquid levels, Peak Ground Accelerations (PGAs), and post earthquakes. 

Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite

This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts grey relational analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole. 

Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2

Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production. 

New Dynamic Constitutive Model for OFHC Copper Film

The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson−Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.

From Customer Innovations to Manufactured Products: A Project Outlook

This paper gives insights into the research project “InnoCyFer” (in the form of an outlook) which is funded by the German Federal Ministry of Economics and Technology. Enabling the integrated customer individual product design as well as flexible manufacturing of these products are the main objectives of the project. To achieve this, a web-based Open Innovation-Platform containing an integrated Toolkit will be developed. This toolkit enables the active integration of the customer’s creativity and potentials of innovation in the product development process. Furthermore, the project will show the chances and possibilities of customer individualized products by building and examining the continuous process from innovation through the customers to the flexible manufacturing of individual products.

Substructure Method for Thermal-Stress Analysis of Liquid-Propellant Rocket Engine Combustion Chamber

This article is devoted to an important problem of calculation of deflected mode of the combustion chamber and the nozzle end of a new liquid-propellant rocket cruise engine. A special attention is given to the methodology of calculation. Three operating modes are considered. The analysis has been conducted in ANSYS software. The methods of conducted research are mathematical modeling, substructure method, cyclic symmetry, finite element method. The calculation has been carried out to order of S.P. Korolev Rocket and Space Corporation «Energia». The main results are practical. Proposed methodology and created models would be able to use for a wide range of strength problems.

The Effects of Perceived Organizational Support and Abusive Supervision on Employee’s Turnover Intention: The Mediating Roles of Psychological Contract and Emotional Exhaustion

Workers (especially, competent personnel) have been recognized as a core contributor to overall organizational effectiveness. Hence, verifying the determinants of turnover intention is one of the most important research issues. This study tested the influence of perceived organizational support and abusive supervision on employee’s turnover intention. In addition, mediating roles of psychological contract and emotional exhaustion were examined. Data from 255 Korean employees supported all hypotheses Implications for research and directions for future research are discussed.  

Removal of Lead in High Rate Activated Sludge System

The heavy metals pollution in water, sediments and fish of Lake Manzala affected form the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200 and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L Alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56% respectively.

Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Damping of inter-area electromechanical oscillations is one of the major challenges to the electric power system operators. This paper presents Gravitational Search Algorithm (GSA) for tuning Static Synchronous Series Compensator (SSSC) based damping controller to improve power system oscillation stability. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The effectiveness of the scheme in damping power system oscillations during system faults at different loading conditions is demonstrated through time-domain simulation.

A Note on Significance of Solar Pond Technology for Power Generation

In the view of current requirements of power generation and the increased interest on renewable energy sources, many options are available for generation of clean power. Solar power generation would be one of the best options in this context. The solar pond uses the principle of conversion of solar energy into heat energy, and also has the capability of storing this energy for certain period of time. The solar ponds could be best option for the regions with high solar radiation throughout the day, and also has free land availability. The paper depicts the significance of solar pond for conversion of solar energy into heat energy with a sight towards the parameters like thermal efficiency, working conditions and cost of construction. The simulation of solar pond system has been carried out for understanding the trends of the thermal efficiencies with respect to time.

Distributed GIS Based Decision Support System for Efficiency Evaluation of Education System: A Case Study of Primary School Education System of Bundelkhand Zone, Uttar Pradesh, India

Decision Support System (DSS), a query-based system meant to help decision makers to use a variety of information for decision making, plays a very vital role in sustainable growth of any country. For this very purpose it is essential to analyze the educational system because education is the only way through which people can be made aware as to how to sustain our planet. The purpose of this paper is to prepare a decision support system for efficiency evaluation of education system with the help of Distributed Geographical Information System.

Perceptions of Climate Change and Adaptation of Climate-Smart Technology by the Paddy Farmers: A Case Study of Kandy District in Sri Lanka

Kandy district in Sri Lanka, has small scale and rain-fed paddy farming, and highly vulnerable to climate change. In this study, the status of climate change was assessed using meteorological data and compared with the perceptions of paddy farming community. Factors affecting the adaptation to the climate smart farming were also assessed.  Meteorological data for 33 years were collected and the changes over time compared with the perceptions of farmers. The temperature, rainfall and number of rainy days have increased in both locations. The onset of rains also has shifted. The perceptions of the majority of the farmers were in line with the actual changes. The knowledge and attitudes about the causes of climate change and adaptation were medium and related to level of adoption. Formulating effective communication strategies, and a collaborative approach involving state, private sector, civil society to make Sri Lankan agriculture ‘climate-smart’ is urgently needed.

Antiinflammatory and Antinociceptive of Hydro Alcoholic Tanacetum balsamita L. Extract

The use of herbs to treat disease is accompanied with the history of human life. This research is aimed to study the anti-inflammatory and antinociceptive effects of hydroalcoholic extract of aerial parts of "Tanacetum balsamita balsamita". In the experimental studies 144 male mice are used. In the inflammatory test, animals were divided into six groups: Control, positive control (receiving Dexamethason at dose of 15mg/kg), and four experimental groups receiving Tanacetum balsamita balsamita hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. Xylene was used to induce inflammation. Formalin was used to study the nociceptive effects. Animals were divided into six groups: control group, positive control group (receiving morphine) and four experimental groups receiving Tanacetum balsamita balsamita (Tb.) hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. I.p. injection of drugs or normal saline was performed 30 minutes before test. The data were analyzed by using one way Variance analysis and Tukey post test. Aerial parts of Tanacetum balsamita balsamita hydroalcoholic extract decreased significantly inflammatory at dose of 200mg/kg (P

Useful Lifetime Prediction of Rail Pads for High Speed Trains

Useful lifetime evaluation of railpads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.

LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft

The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.

Dual Band Microstrip Patch Antenna for IEEE802.11b Application

In this paper, the design of a coaxial feed single layer rectangular microstrip patch antenna for IEEE802.11b application is presented. The proposed antenna is designed by using substrate FR4_epoxy having permittivity of about 4.4 and tangent loss of 0.013. The characteristics of the substrate are designed and to evaluate the performance of modeled antenna using HFSS v.11 EM simulator, from Ansoft. The proposed antenna dual resonant frequency has been achieved in the band of 1.57GHz-1.68GHz (with BW 30 MHz) and 2.25 GHz -2.55GHz (with BW 40MHz). The simulation results with frequency response, radiation pattern and return loss, VSWR, Input Impedance are presented with appropriate table and graph.

Simulation of Static Frequency Converter for Synchronous Machine Operation and Investigation of Shaft Voltage

This study is carried out to understand the effects of Static frequency converter (SFC) on large machine. SFC has a feature of four quadrant operations. By virtue of this it can be implemented to run a synchronous machine either as a motor or alternator. This dual mode operation helps a single machine to start & run as a motor and then it can be converted as an alternator whenever required. One such dual purpose machine is taken here for study. This machine is installed at a laboratory carrying out short circuit test on high power electrical equipment. SFC connected with this machine is broadly described in this paper. The same SFC has been modeled with the MATLAB/Simulink software. The data applied on this virtual model are the actual parameters from SFC and synchronous machine. After running the model, simulated machine voltage and current waveforms are validated with the real measurements. Processing of these waveforms is done through Fast Fourier Transformation (FFT) which reveals that the waveforms are not sinusoidal rather they contain number of harmonics. These harmonics are the major cause of generating shaft voltage. It is known that bearings of electrical machine are vulnerable to current flow through it due to shaft voltage. A general discussion on causes of shaft voltage in perspective with this machine is presented in this paper.

An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal

Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.