Statistical (Radio) Path Loss Modelling: For RF Propagations within localized Indoor and Outdoor Environments of the Academic Building of INTI University College (Laureate International Universities)

A handful of propagation textbooks that discuss radio frequency (RF) propagation models merely list out the models and perhaps discuss them rather briefly; this may well be frustrating for the potential first time modeller who's got no idea on how these models could have been derived. This paper fundamentally provides an overture in modelling the radio channel. Explicitly, for the modelling practice discussed here, signal strength field measurements had to be conducted beforehand (this was done at 469 MHz); to be precise, this paper primarily concerns empirically/statistically modelling the radio channel, and thus provides results obtained from empirically modelling the environments in question. This paper, on the whole, proposes three propagation models, corresponding to three experimented environments. Perceptibly, the models have been derived by way of making the most use of statistical measures. Generally speaking, the first two models were derived via simple linear regression analysis, whereas the third have been originated using multiple regression analysis (with five various predictors). Additionally, as implied by the title of this paper, both indoor and outdoor environments have been experimented; however, (somewhat) two of the environments are neither entirely indoor nor entirely outdoor. The other environment, however, is completely indoor.

Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials

The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.

Factors of Successful Wooden Furniture Design Process

This study systemizes processes and methods in wooden furniture design that contains uniqueness in function and aesthetics. The study was done by research and analysis for designer-s consideration factors that affect function and production. Therefore, the study result indicates that such factors are design process (planning for design, product specifications, concept design, product architecture, industrial design, production), design evaluation as well as wooden furniture design dependent factors i.e. art (art style; furniture history, form), functionality (the strength and durability, area place, using), material (appropriate to function, wood mechanical properties), joints, cost, safety, and social responsibility. Specifically, all aforementioned factors affect good design. Resulting from direct experience gained through user-s usage, the designer must design the wooden furniture systemically and effectively. As a result, this study selected dinning armchair as a case study with all involving factors and all design process stated in this study.

Comparison of Conventional and “ECO“Transportation Pavements in Cyprus using Life Cycle Approach

Road industry has challenged the prospect of ecoconstruction. Pavements may fit within the framework of sustainable development. Hence, research implements assessments of conventional pavements impacts on environment in use of life cycle approach. To meet global, and often national, targets on pollution control, newly introduced pavement designs are under study. This is the case of Cyprus demonstration, which occurred within EcoLanes project work. This alternative pavement differs on concrete layer reinforced with tire recycling product. Processing of post-consumer tires produces steel fibers improving strength capacity against cracking. Thus maintenance works are relevantly limited in comparison to flexible pavement. This enables to be more ecofriendly, referenced to current study outputs. More specific, proposed concrete pavement life cycle processes emits 15 % less air pollutants and consumes 28 % less embodied energy than those of the asphalt pavement. In addition there is also a reduction on costs by 0.06 %.

Denoising by Spatial Domain Averaging for Wireless Local Area Network Terminal Localization

Terminal localization for indoor Wireless Local Area Networks (WLANs) is critical for the deployment of location-aware computing inside of buildings. A major challenge is obtaining high localization accuracy in presence of fluctuations of the received signal strength (RSS) measurements caused by multipath fading. This paper focuses on reducing the effect of the distance-varying noise by spatial filtering of the measured RSS. Two different survey point geometries are tested with the noise reduction technique: survey points arranged in sets of clusters and survey points uniformly distributed over the network area. The results show that the location accuracy improves by 16% when the filter is used and by 18% when the filter is applied to a clustered survey set as opposed to a straight-line survey set. The estimated locations are within 2 m of the true location, which indicates that clustering the survey points provides better localization accuracy due to superior noise removal.

An Investigation of the Effect of the Different Mix Constituents on Concrete Electric Resistivity

Steel corrosion in concrete is considered as a main engineering problems for many countries and lots of expenses has been paid for their repair and maintenance annually. This problem may occur in all engineering structures whether in coastal and offshore or other areas. Hence, concrete structures should be able to withstand corrosion factors existing in water or soil. Reinforcing steel corrosion enhancement can be measured by use of concrete electrical resistance; and maintaining high electric resistivity in concrete is necessary for steel corrosion prevention. Lots of studies devoted to different aspects of the subjects worldwide. In this paper, an evaluation of the effects of W/C ratio, cementitious materials, and percent increase in silica fume were investigated on electric resistivity of high strength concrete. To do that, sixteen mix design with one aggregate grading was planned. Five of them had varying amount of W/C ratio and other eleven mixes was prepared with constant W/C ratio but different amount of cementitious materials. Silica fume and super plasticizer were used with different proportions in all specimens. Specimens were tested after moist curing for 28 days. A total of 80 cube specimens (50 mm) were tested for concrete electrical resistance. Results show that concrete electric resistivity can be increased with increasing amount of cementitious materials and silica fume.

DEA ANN Approach in Supplier Evaluation System

In Supply Chain Management (SCM), strengthening partnerships with suppliers is a significant factor for enhancing competitiveness. Hence, firms increasingly emphasize supplier evaluation processes. Supplier evaluation systems are basically developed in terms of criteria such as quality, cost, delivery, and flexibility. Because there are many variables to be analyzed, this process becomes hard to execute and needs expertise. On this account, this study aims to develop an expert system on supplier evaluation process by designing Artificial Neural Network (ANN) that is supported with Data Envelopment Analysis (DEA). The methods are applied on the data of 24 suppliers, which have longterm relationships with a medium sized company from German Iron and Steel Industry. The data of suppliers consists of variables such as material quality (MQ), discount of amount (DOA), discount of cash (DOC), payment term (PT), delivery time (DT) and annual revenue (AR). Meanwhile, the efficiency that is generated by using DEA is added to the supplier evaluation system in order to use them as system outputs.

A Review of Methanol Production from Methane Oxidation via Non-Thermal Plasma Reactor

Direct conversion of methane to methanol by partial oxidation in a thermal reactor has a poor yield of about 2% which is less than the expected economical yield of about 10%. Conventional thermal catalytic reactors have been proposed to be superseded by plasma reactors as a promising approach, due to strength of the electrical energy which can break C-H bonds of methane. Among the plasma techniques, non-thermal dielectric barrier discharge (DBD) plasma chemical process is one of the most future promising technologies in synthesizing methanol. The purpose of this paper is presenting a brief review of CH4 oxidation with O2 in DBD plasma reactors based on the recent investigations. For this reason, the effect of various parameters of reactor configuration, feed ratio, applied voltage, residence time (gas flow rate), type of applied catalyst, pressure and reactor wall temperature on methane conversion and methanol selectivity are discussed.

Effects of Opening Shape and Location on the Structural Strength of R.C. Deep Beams with Openings

This research investigates the effects of the opening shape and location on the structural behavior of reinforced concrete deep beam with openings, while keeping the opening size unchanged. The software ANSYS 12.1 is used to handle the nonlinear finite element analysis. The ultimate strength of reinforced concrete deep beam with opening obtained by ANSYS 12.1 shows fair agreement with the experimental results, with a difference of no more than 20%. The present work concludes that the opening location has much more effect on the structural strength than the opening shape. It was concluded that placing the openings near the upper corners of the deep beam may double the strength, and the use of a rectangular narrow opening, with the long sides in the horizontal direction, can save up to 40% of structural strength of the deep beam.

Effect of Heat Input on the Weld Metal Toughness of Chromium-Molybdenum Steel

An attempt has been made to determine the strength and impact properties of Cr-Mo steel weld and base materials by varying the current during manual metal arc welding. Toughness over a temperature range from -32 to 100°C of base, heat affected zone (HAZ) and weld zones at three current settings are made. It is observed that the deterioration in notch toughness at any zone with the temperature decreases. The values of notch toughness for all zones at -32°C are almost same for any current settings. The values of notch toughness at HAZ area are higher than that of weld area due to the coarsening of ferrite grain of HAZ occurs with higher heat input. From microhardness and microstructure result, it can be concluded that large inclusion content in weld deposit is the cause of lower notch toughness value.

Experimental Studies on Treated Sub-base Soil with Fly Ash and Cement for Sustainable Design Recommendations

The pavement constructions on soft and expansive soils are not durable and unable to sustain heavy traffic loading. As a result, pavement failures and settlement problems will occur very often even under light traffic loading due to cyclic and rolling effects. Geotechnical engineers have dwelled deeply into this matter, and adopt various methods to improve the engineering characteristics of soft fine-grained soils and expansive soils. The problematic soils are either replaced by good and better quality material or treated by using chemical stabilization with various binding materials. Increased the strength and durability are also the part of the sustainability drive to reduce the environment footprint of the built environment by the efficient use of resources and waste recycle materials. This paper presents a series of laboratory tests and evaluates the effect of cement and fly ash on the strength and drainage characteristics of soil in Miri. The tests were performed at different percentages of cement and fly ash by dry weight of soil. Additional tests were also performed on soils treated with the combinations of fly ash with cement and lime. The results of this study indicate an increase in unconfined compression strength and a decrease in hydraulic conductivity of the treated soil.

Information and Communication Technologies vs. Education and Training: Contribution to Understand the Millennials’ Generational Effect

Information and Communication Technologies (ICT) are increasing in importance everyday, especially since the 90’s (last decade of birth for the Millennials generation). While social interactions involving the Millennials generation have been studied, a lack of investigation remains regarding the use of the ICT by this generation as well as the impact on outcomes in education and professional training. Observing and interviewing students preparing a MSc, we aimed at characterizing the interaction students-ICT during the courses. We found that up to 50% of the students (mainly female) could use ICT during courses at a rate of 0.84 occurrence/minutes for some of them, and they thought this involvement did not disturb learning, even was helpful. As recent researches show that multitasking leads people think they are much better than they actually are, further observations with assessments are needed to conclude whether or not the use ICT by students during the courses is a real strength.

Bone Generation through Mechanical Loading

Bones are dynamic and responsive organs, they regulate their strength and mass according to the loads which they are subjected. Because, the Wnt/β-catenin pathway has profound effects on the regulation of bone mass, we hypothesized that mechanical loading of bone cells stimulates Wnt/β-catenin signaling, which results in the generation of new bone mass. Mechanical loading triggers the secretion of the Wnt molecule, which after binding to transmembrane proteins, causes GSK-3β (Glycogen synthase kinase 3 beta) to cease the phosphorylation of β-catenin. β-catenin accumulation in the cytoplasm, followed by its transport into the nucleus, binding to transcription factors (TCF/LEF) that initiate transcription of genes related to bone formation. To test this hypothesis, we used TOPGAL (Tcf Optimal Promoter β-galactosidase) mice in an experiment in which cyclic loads were applied to the forearm. TOPGAL mice are reporters for cells effected by the Wnt/β-catenin signaling pathway. TOPGAL mice are genetically engineered mice in which transcriptional activation of β- catenin, results in the production of an enzyme, β-galactosidase. The presence of this enzyme allows us to localize transcriptional activation of β-catenin to individual cells, thereby, allowing us to quantify the effects that mechanical loading has on the Wnt/β-catenin pathway and new bone formation. The ulnae of loaded TOPGAL mice were excised and transverse slices along different parts of the ulnar shaft were assayed for the presence of β-galactosidase. Our results indicate that loading increases β-catenin transcriptional activity in regions where this pathway is already primed (i.e. where basal activity is already higher) in a load magnitude dependent manner. Further experiments are needed to determine the temporal and spatial activation of this signaling in relation to bone formation.

The Effect of Fine Aggregate Properties on the Fatigue Behavior of the Conventional and Polymer Modified Bituminous Mixtures Using Two Types of Sand as Fine Aggregate

Fatigue cracking continues to be the main challenges in improving the performance of bituminous mixture pavements. The purpose of this paper is to look at some aspects of the effects of fine aggregate properties on the fatigue behaviour of hot mixture asphalt. Two types of sand (quarry and mining sand) with two conventional bitumen (PEN 50/60 & PEN 80/100) and four polymers modified bitumen PMB (PM1_82, PM1_76, PM2_82 and PM2_76) were used. Physical, chemical and mechanical tests were performed on the sands to determine their effect when incorporated with a bituminous mixture. According to the beam fatigue results, quarry sand that has more angularity, rougher, higher shear strength and a higher percentage of Aluminium oxide presented higher resistance to fatigue. Also a PMB mixture gives better fatigue results than conventional mixtures, this is due to the PMB having better viscosity property than that of the conventional bitumen.

Analysis of Statistical Data on Social Resources Dimension of Occupational Status Attainment: A Rational Choice Approach

The aim of the present study is to analyze empirical researches on the social resources dimension of occupational status attainment process and relate them to the rational choice approach. The analysis suggests that the existing data on the strength of ties aspect of social resources is insufficient and does not allow any implication concerning rational actor-s behavior. However, the results concerning work relation aspect are more encouraging.

Green Building Materials: Hemp Oil Based Biocomposites

Novel acrylated epoxidized hemp oil (AEHO) based bioresins were successfully synthesised, characterized and applied to biocomposites reinforced with woven jute fibre. Characterisation of the synthesised AEHO consisted of acid number titrations and FTIR spectroscopy to assess the success of the acrylation reaction. Three different matrices were produced (vinylester (VE), 50/50 blend of AEHO/VE and 100% AEHO) and reinforced with jute fibre to form three different types of biocomposite samples. Mechanical properties in the form of flexural and interlaminar shear strength (ILSS) were investigated and compared for the different samples. Results from the mechanical tests showed that AEHO and 50/50 based neat bioresins displayed lower flexural properties compared with the VE samples. However when applied to biocomposites and compared with VE based samples, AEHO biocomposites demonstrated comparable flexural performance and improved ILSS. These results are attributed to improved fibre-matrix interfacial adhesion due to surface-chemical compatibility between the natural fibres and bioresin.

A Study of Recycle Materials to Develop for Auto Part

At the present, auto part industries have become higher challenge in strategy market. As this consequence, manufacturers need to have better response to customers in terms of quality, cost, and delivery time. Moreover, they need to have a good management in factory to comply with international standard maximum capacity and lower cost. This would lead companies to have to order standard part from aboard and become the major cost of inventory. The development of auto part research by recycling materials experiment is to compare the auto parts from recycle materials to international auto parts (CKD). Factors studied in this research were the recycle material ratios of PU-foam, felt, and fabric. Results of recycling materials were considered in terms of qualities and properties on the parameters such as weight, sound absorption, water absorption, tensile strength, elongation, and heat resistance with the CKD. The results were showed that recycling materials would be used to replace for the CKD.

Effect of Endplate Shape on Performance and Stability of Wings-in Ground (WIG) Craft

Numerical analysis for the aerodynamic characteristics of the WIG (wing-in ground effect) craft with highly cambered and aspect ratio of one is performed to predict the ground effect for the case of with- and without- lower-extension endplate. The analysis is included varying angles of attack from 0 to10 deg. and ground clearances from 5% of chord to 50%. Due to the ground effect, the lift by rising in pressure on the lower surface is increased and the influence of wing-tip vortices is decreased. These two significant effects improve the lift-drag ratio. On the other hand, the endplate prevents the high-pressure air escaping from the air cushion at the wing tip and causes to increase the lift and lift-drag ratio further. It is found from the visualization of computation results that two wing-tip vortices are generated from each surface of the wing tip and their strength are weak and diminished rapidly. Irodov-s criteria are also evaluated to investigate the static height stability. The comparison of Irodov-s criteria shows that the endplate improves the deviation of the static height stability with respect to pitch angles and heights. As the results, the endplate can improve the aerodynamic characteristics and static height stability of wings in ground effect, simultaneously.

Treatment of Petroleum Refinery Wastewater by using UASB Reactors

Petroleum refineries discharged large amount of wastewater -during the refining process- that contains hazardous constituents that is hard to degrade. Anaerobic treatment process is well known as an efficient method to degrade high strength wastewaters. Up-flow Anaerobic Sludge Blanker (UASB) is a common process used for various wastewater treatments. Two UASB reactors were set up and operated in parallel to evaluate the treatment efficiency of petroleum refinery wastewater. In this study four organic volumetric loading rates were applied (i.e. 0.58, 0.89, 1.21 and 2.34 kg/m3·d), two loads to each reactor. Each load was applied for a period of 60 days for the reactor to acclimatize and reach steady state, and then the second load applied. The chemical oxygen demand (COD) removals were satisfactory with the removal efficiencies at the loadings applied were 78, 82, 83 and 81 % respectively.

Mechanical Properties of Particle Boards from Maize Cob and Urea-Formaldehyde Resin

Particle boards were prepared from Maize cob (MC) and urea-formaldehyde resin (UFR) on compression moulding machine. The amount of MC was varied from 50-120g while 30g of UFR was kept constant. Some mechanical properties of the particle boards were tested using the standard ASM methods. The results show that as the MC content increased from 50- 120g in 30g UFR, the hardness increased from about 6.89 x 102 to7.51 x 102MPa. Impact strength decreased from 3.3x 10-2 to 0.45 x 10-2J/M2, while tensile strength initially increased from 2.63 x 102 to 3.14 x 102 MPa as the MC increased from 50 to 60g in 30g UFR, thereafter, it decreased to about 1.35 x 102MPa at 120g in 30g content.